Details

Sustainable Materials for Electrochemcial Capacitors


Sustainable Materials for Electrochemcial Capacitors


1. Aufl.

von: Inamuddin, Tariq Altalhi, Sayed Mohammed Adnan

173,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 15.08.2023
ISBN/EAN: 9781394167081
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Sustainable Materials for Electrochemical Capacitors</b> <p><b>The book highlights the properties of sustainable materials for the production of commercial electrochemical capacitors.</b> <p><i>Sustainable Materials for Electrochemical Capacitors</i> details the progress in the usage of ubiquitous environmentally sustainable materials. Due to their cost effectiveness, flexible forms, frequent accessibility, and environmentally friendly nature, electrochemical capacitors with significant surface areas of their carbon components are quite common. Many novel ways for using bio-derived components in highly efficient electrochemical capacitors are being established as a consequence of current research, and this book provides details of all these developments. <p>The book provides: <ul><li>A broad overview of properties explored for the development of electrochemical capacitors;</li> <li>Introduces potential applications of electrochemical capacitors;</li> <li>Highlights sustainable materials exploited for the production of electrochemical capacitors;</li> <li>Presents commercial potential of electrochemical capacitors.</li></ul> <p><b>Audience</b> <p>This is a useful guide for engineers, materials scientists, physicists, and innovators, who are linked to the development and applications of electrochemical capacitors.
<p>Preface xv</p> <p><b>1 Sustainable Materials for Electrochemical Supercapacitors: Eco Materials 1</b><br /><i>R. Kumar and R. Thangappan</i></p> <p>1.1 Introduction 1</p> <p>1.2 Eco-Carbon-Based Electrode Materials 3</p> <p>1.3 Eco-Metal Oxide-Based Electrode Materials 8</p> <p>1.4 Eco-Carbon-Based Material/Metal Oxide Composite Electrode Materials 11</p> <p>1.5 Conclusion 13</p> <p><b>2 Solid Waste-Derived Carbon Materials for Electrochemical Capacitors 19</b><br /><i>Shreeganesh Subraya Hegde and Badekai Ramachandra Bhat</i></p> <p>2.1 Introduction 19</p> <p>2.2 Solid Waste as a Source of CNS 20</p> <p>2.3 Preparation and Activation Methods of Solid Waste-Derived CNS 23</p> <p>2.4 Effect of Structural and Morphological Diversities on Electrochemical Performance 25</p> <p>2.5 Environmental Trash-Derived CNS in Electrochemical Capacitors 26</p> <p>2.6 Challenges and Future Prospects 27</p> <p>2.7 Conclusions 27</p> <p><b>3 Metal Hydroxides 33</b><br /><i>Rida Fatima, Sania Naseer, Muhammad Rehan Hasan Shah Gilani, Muhammad Aamir and Javeed Akhtar</i></p> <p>3.1 Introduction 33</p> <p>3.2 Method to Fabricate Metal Hydroxide 34</p> <p>3.3 Properties and Applications of MOHs 36</p> <p>3.4 Examples of Metal Hydroxide 49</p> <p>3.5 Conclusions 57</p> <p><b>4 Porous Organic Polymers: Genres, Chemistry, Synthetic Strategies, and Diversified Applications 65</b><br /><i>V. Renuga</i></p> <p>4.1 Introduction 65</p> <p>4.2 Family of Porous Organic Materials 70</p> <p>4.3 Conclusions and Perspectives 112</p> <p><b>5 Gel-Type Natural Polymers as Electroconductive Materials 133</b><br /><i>Arshpreet Kaur, Madhvi and Dhiraj Sud</i></p> <p>5.1 Introduction 133</p> <p>5.2 Natural Polymers 134</p> <p>5.3 Synthesis Methods for Fabrication of Natural Polymer-Based Hydrogels 144</p> <p>5.4 Natural Polymer-Based Physically Cross-Linked Hydrogels 147</p> <p>5.5 Properties of Natural Polymer-Based Hydrogels 148</p> <p>5.6 Stimuli Sensitivity of Hydrogels 150</p> <p>5.7 Application of Hydrogels as Electrochemical Supercapacitors 150</p> <p>5.8 Conducting Polymer Hydrogels as Electrode Materials 154</p> <p>5.9 Conducting Polymer Hydrogels as Electrolyte Materials 156</p> <p>5.10 Conclusion 159</p> <p><b>6 Ionic Liquids for Supercapacitors 167</b><br /><i>Guocai Tian</i></p> <p>6.1 Introduction 167</p> <p>6.2 Brief Introduction of Supercapacitor 169</p> <p>6.3 Ionic Liquids and Its Unique Properties 174</p> <p>6.4 Application of Ionic Liquids in Supercapacitors 181</p> <p>6.5 Conclusion and Prospective 193</p> <p><b>7 Functional Binders for Electrochemical Capacitors 205</b><br /><i>Purnima Baruah and Debajyoti Mahanta</i></p> <p>7.1 Introduction 205</p> <p>7.2 Characteristics of Binder 206</p> <p>7.3 Method of Fabricating Supercapacitor Electrode 207</p> <p>7.4 Mechanism of Binding Process 207</p> <p>7.5 Classification of Binders 208</p> <p>7.6 Characterization Techniques 209</p> <p>7.7 Conventional Binders and Related Issues 209</p> <p>7.8 Sustainable Binders 210</p> <p>7.9 Conclusion 216</p> <p><b>8 Sustainable Substitutes for Fluorinated Electrolytes in Electrochemical Capacitors 221</b><br /><i>Sina Yaghoubi, Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Aziz Babapoor and Chin Wei Lai</i></p> <p>8.1 Introduction 221</p> <p>8.2 Fluorinated Electrolytes 224</p> <p>8.3 Sustainable Substitutes for Fluorinated Electrolytes 227</p> <p>8.4 Performance of Sustainable Electrolytes Compared to Fluorinated Electrolytes 234</p> <p>8.5 Final Remarks 236</p> <p><b>9 Aqueous Redox-Active Electrolytes 247</b><br /><i>Ranganatha S.</i></p> <p>9.1 Introduction 247</p> <p>9.2 Effect of the Electrolyte on Supercapacitor Performance 248</p> <p>9.3 Aqueous Electrolytes 250</p> <p>9.4 Acidic Electrolytes 251</p> <p>9.5 Alkaline Electrolytes 252</p> <p>9.6 Neutral Electrolyte 254</p> <p>9.7 Conclusion and Future Research Directions 257</p> <p><b>10 Biodegradable Electrolytes 261</b><br /><i>Tuba Saleem, Ijaz Rasul, Habibullah Nadeem, Sanora Sehar and Arfaa Sajid</i></p> <p>10.1 Introduction 261</p> <p>10.2 Classification of Biodegradable Electrolytes 263</p> <p>10.3 Preparation of Biodegradable Electrolytes 268</p> <p>10.4 Some Defined Ways to Increase the Ionic Conductivity 268</p> <p>10.5 Factors Affecting Ion Conduction of Biodegradable Polymer Electrolytes 269</p> <p>10.6 Properties of Ideal Biodegradable Electrolyte System 270</p> <p>10.7 Applications of Biodegradable Electrolytes 270</p> <p>10.8 Conclusion 273</p> <p><b>11 Supercapattery: An Electrochemical Energy Storage Device 279</b><br /><i>Fiona Joyline Mascarenhas, Shreeganesh Subraya Hegde and Badekai Ramachandra Bhat</i></p> <p>11.1 Introduction 279</p> <p>11.2 Batteries and Capacitors 280</p> <p>11.3 Supercapattery Device and Electrode Materials 281</p> <p>11.4 Advantages and Challenges of Supercapatteries 287</p> <p>11.5 Conclusions 287</p> <p><b>12 Ceramic Multilayers and Films for High-Performance Supercapacitors 291</b><br /><i>Sonali Verma, Bhavya Padha and Sandeep Arya</i></p> <p>12.1 Introduction 291</p> <p>12.2 Different Types of Ceramic Materials 292</p> <p>12.3 Multilayer Structure 293</p> <p>12.4 Supercapacitors Based on Ceramic Materials 294</p> <p>12.5 Challenges and Prospects 297</p> <p>12.6 Conclusion 298</p> <p><b>13 Potential Applications in Sustainable Supercapacitors 305</b><br /><i>Pitchaimani Veerakumar</i></p> <p>13.1 Introduction 306</p> <p>13.2 Fundamentals and Components of SCs 307</p> <p>13.3 Sustainable Nanomaterials in SCs 311</p> <p>13.4 Sustainable Carbon Nanomaterials for Energy Storage 315</p> <p>13.5 Conclusions 325</p> <p><b>14 Wearable Supercapacitors 339</b><br /><i>Preety Ahuja, Sanjeev Kumar Ujjain, M. Ramanand Singh, Neelu Dheer and Rajni Kanojia</i></p> <p>14.1 Introduction 339</p> <p>14.2 Working Principle 340</p> <p>14.3 Design of Electrode Materials 342</p> <p>14.4 Wearable Supercapacitor 346</p> <p>14.5 Integrated Application 350</p> <p>14.6 Conclusion 354</p> <p><b>15 Electrospun Materials 361</b><br /><i>Hina Sahar, Sania Naseer, Muhammad Rehan Hasan Shah Gilani, Syed Ali Raza Naqvi, Muhammad Aamir and Javeed Akhtar</i></p> <p>15.1 Introduction 361</p> <p>15.2 Electrospinning Process 362</p> <p>15.3 Advantages of Electrospinning Technique 363</p> <p>15.4 Working Parameters of Electrospinning Process 363</p> <p>15.5 Electrospinning-Based Preparation Methods for Nanofibers 367</p> <p>15.6 Formation of Pore in Electrospun Polymer Fibers 368</p> <p>15.7 Modification of Electrospun Micro- and Nanofibers 371</p> <p>15.8 Applications 375</p> <p>15.9 Conclusion 382</p> <p><b>16 Polysaccharide Biomaterials for Electrochemical Applications 391</b><br /><i>Neelam Srivastava and Dipti Yadav</i></p> <p>16.1 Introduction 391</p> <p>16.2 Polysaccharides in Energy Devices 393</p> <p><b>17 Polymer Inks for Printable Supercapacitors 415</b><br /><i>Yurui Liu, Yijie Zhou and Yanfei Xu</i></p> <p>17.1 Introduction 415</p> <p>17.2 Screen Printing 419</p> <p>17.3 Inkjet Printing 419</p> <p>17.4 3D Printing 419</p> <p>17.5 Conclusion and Outlook 422</p> <p><b>18 Biomass-Derived Carbon for Supercapacitors 427</b><br /><i>Priyadharshini M., Pazhanivel T. and Hariprasath K. R.</i></p> <p>18.1 Introduction 428</p> <p>18.2 Tuneable Physiochemical Properties 429</p> <p>18.3 Synthesis Procedure 432</p> <p>18.4 Main Categories of Biomass 432</p> <p>18.5 Conclusion and Future Perspective 436</p> <p>References 437</p> <p>Index 441</p>
<p><b>Inamuddin, PhD,</b> is an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in the multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has published about 190 research articles in various international scientific journals, 18 book chapters, and 60 edited books with multiple well-known publishers. <p><b>Tariq Altalhi, PhD,</b> is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material. He also researches natural extracts and their application in the generation of value-added products such as nanomaterials. <p><b>Sayed Mohammed Adnan, PhD,</b> is a faculty member of the Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, India.
<p><b>The book highlights the properties of sustainable materials for the production of commercial electrochemical capacitors.</b> <p><i>Sustainable Materials for Electrochemical Capacitors</i> details the progress in the usage of ubiquitous environmentally sustainable materials. Due to their cost effectiveness, flexible forms, frequent accessibility, and environmentally friendly nature, electrochemical capacitors with significant surface areas of their carbon components are quite common. Many novel ways for using bio-derived components in highly efficient electrochemical capacitors are being established as a consequence of current research, and this book provides details of all these developments. <p>The book provides: <ul><li>A broad overview of properties explored for the development of electrochemical capacitors;</li> <li>Introduces potential applications of electrochemical capacitors;</li> <li>Highlights sustainable materials exploited for the production of electrochemical capacitors;</li> <li>Presents commercial potential of electrochemical capacitors.</li></ul> <p><b>Audience</b> <p>This is a useful guide for engineers, materials scientists, physicists, and innovators, who are linked to the development and applications of electrochemical capacitors.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €