Details

Proton Exchange Membrane Fuel Cells


Proton Exchange Membrane Fuel Cells

Electrochemical Methods and Computational Fluid Dynamics
1. Aufl.

von: Inamuddin, Omid Moradi, Mohd Imran Ahamed

173,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 10.02.2023
ISBN/EAN: 9781119829539
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>PROTON EXCHANGE MEMBRANE FUEL CELLS</b> <p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel.</b> <p>Proton exchange membrane fuel cells (PEMFCs) are among the most anticipated stationary clean energy devices in renewable and alternative energy. Despite the appreciable improvement in their cost and durability, which are the two major commercialization barriers, their availability has not matched demand. This is mainly due to the use of expensive metal-catalyst, less durable membranes, and poor insight into the ongoing phenomena inside proton exchange membrane fuel cells. Efforts are being made to optimize the use of precious metals as catalyst layers or find alternatives that can be durable for more than 5000 hours. <p>Computational models are also being developed and studied to get an insight into the shortcomings and provide solutions. The announcement by various companies that they will be producing proton exchange membrane fuel cells-based cars by 2025 has accelerated the current research on proton exchange membrane fuel cells. The breakthrough is urgently needed. The membranes, catalysts, polymer electrolytes, and especially the understanding of diffusion layers, need thorough revision and improvement to achieve the target. This exciting breakthrough volume explores these challenges and offers solutions for the industry. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.
<p>Preface xiii</p> <p><b>1 Stationary and Portable Applications of Proton Exchange Membrane Fuel Cells 1<br /> </b><i>Shahram Mehdipour-Ataei and Maryam Mohammadi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Proton Exchange Membrane Fuel Cells 3</p> <p>1.2.1 Stationary Applications 3</p> <p>1.2.2 Portable Applications 5</p> <p>1.2.3 Hydrogen PEMFCs 6</p> <p>1.2.4 Alcohol PEMFCs 6</p> <p>1.2.4.1 Direct Methanol Fuel Cell 6</p> <p>1.2.4.2 Direct Dimethyl Ether Fuel Cell 7</p> <p>1.2.5 Microbial Fuel Cells 8</p> <p>1.2.5.1 Electricity Generation 8</p> <p>1.2.5.2 Microbial Desalination Cells 9</p> <p>1.2.5.3 Removal of Metals From Industrial Waste 9</p> <p>1.2.5.4 Wastewater Treatment 9</p> <p>1.2.5.5 Microbial Solar Cells and Fuel Cells 10</p> <p>1.2.5.6 Biosensors 11</p> <p>1.2.5.7 Biohydrogen Production 11</p> <p>1.2.6 Micro Fuel Cells 11</p> <p>1.3 Conclusion and Future Perspective 12</p> <p>References 13</p> <p><b>2 Graphene-Based Membranes for Proton Exchange Membrane Fuel Cells 17<br /> </b><i>Beenish Saba</i></p> <p>2.1 Introduction 18</p> <p>2.2 Membranes 19</p> <p>2.3 Graphene: A Proton Exchange Membrane 19</p> <p>2.4 Synthesis of GO Composite Membranes 20</p> <p>2.5 Graphene Oxide in Fuel Cells 21</p> <p>2.5.1 Electrochemical Fuel Cells 22</p> <p>2.5.1.1 Hydrogen Oxide Polymer Electrolyte Membrane Fuel Cells 22</p> <p>2.5.1.2 Direct Methanol Fuel Cells 23</p> <p>2.5.2 Bioelectrochemical Fuel Cells 24</p> <p>2.6 Characterization Techniques of GO Composite Membranes 25</p> <p>2.7 Conclusion 26</p> <p>References 27</p> <p><b>3 Graphene Nanocomposites as Promising Membranes for Proton Exchange Membrane Fuel Cells 33<br /> </b><i>Ranjit Debnath and Mitali Saha</i></p> <p>3.1 Introduction 34</p> <p>3.2 Recent Kinds of Fuel Cells 35</p> <p>3.2.1 Proton Exchange Membrane Fuel Cells 36</p> <p>3.3 Conclusion 45</p> <p>Acknowledgements 45</p> <p>References 45</p> <p><b>4 Carbon Nanotube–Based Membranes for Proton Exchange Membrane Fuel Cells 51<br /> </b><i>Umesh Fegade and K. E. Suryawanshi</i></p> <p>4.1 Introduction 52</p> <p>4.2 Overview of Carbon Nanotube–Based Membranes PEM Cells 54</p> <p>References 64</p> <p><b>5 Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells 73<br /> </b><i>P. Satishkumar, Arun M. Isloor and Ramin Farnood</i></p> <p>5.1 Introduction 74</p> <p>5.2 Nanocomposite Membranes for PEMFC 77</p> <p>5.3 Evaluation Methods of Proton Exchange Membrane Properties 80</p> <p>5.3.1 Proton Conductivity Measurement 80</p> <p>5.3.2 Water Uptake Measurement 81</p> <p>5.3.3 Oxidative Stability Measurement 81</p> <p>5.3.4 Thermal and Mechanical Properties Measurement 81</p> <p>5.4 Nafion-Based Membrane 82</p> <p>5.5 Poly(Benzimidazole)–Based Membrane 86</p> <p>5.6 Sulfonated Poly(Ether Ether Ketone)–Based Membranes 91</p> <p>5.7 Poly(Vinyl Alcohol)–Based Membranes 95</p> <p>5.8 Sulfonated Polysulfone–Based Membranes 98</p> <p>5.9 Chitosan-Based Membranes 100</p> <p>5.10 Conclusions 103</p> <p>References 103</p> <p><b>6 Organic-Inorganic Composite Membranes for Proton Exchange Membrane Fuel Cells 111<br /> </b><i>Guocai Tian</i></p> <p>6.1 Introduction 111</p> <p>6.2 Proton Exchange Membrane Fuel Cell 112</p> <p>6.3 Proton Exchange Membrane 116</p> <p>6.3.1 Perfluorosulfonic Acid PEM 117</p> <p>6.3.2 Partial Fluorine-Containing PEM 117</p> <p>6.3.3 Non-Fluorine PEM 118</p> <p>6.3.4 Modification of Proton Exchange Membrane 118</p> <p>6.4 Research Progress of Organic-Inorganic Composite PEM 120</p> <p>6.4.1 Inorganic Oxide/Polymer Composite PEM 120</p> <p>6.4.2 Two-Dimensional Inorganic Material/Polymer Composite PEM 122</p> <p>6.4.3 Carbon Nanotube/Polymer Composite PEM 124</p> <p>6.4.4 Inorganic Acid–Doped Composite Film 125</p> <p>6.4.5 Heteropoly Acid–Doped Composite PEM 126</p> <p>6.4.6 Zirconium Phosphate–Doped Composite PEM 127</p> <p>6.4.7 Polyvinyl Alcohol/Inorganic Composite Membrane 127</p> <p>6.5 Conclusion and Prospection 128</p> <p>Acknowledgments 130</p> <p>Conflict of Interest 130</p> <p>References 130</p> <p><b>7 Thermoset-Based Composite Bipolar Plates in Proton Exchange Membrane Fuel Cell: Recent Developments and Challenges 137<br /> </b><i>Salah M.S. Al-Mufti and S.J.A. Rizvi</i></p> <p>7.1 Introduction 138</p> <p>7.2 Theories of Electrical Conductivity in Polymer Composites 142</p> <p>7.2.1 Percolation Theory 145</p> <p>7.2.2 General Effective Media Model 146</p> <p>7.2.3 McLachlan Model 147</p> <p>7.2.4 Mamunya Model 148</p> <p>7.2.5 Taherian Model 149</p> <p>7.3 Matrix and Fillers 151</p> <p>7.3.1 Thermoset Resins 151</p> <p>7.3.1.1 Epoxy 152</p> <p>7.3.1.2 Unsaturated Polyester Resin 152</p> <p>7.3.1.3 Vinyl Ester Resins 152</p> <p>7.3.1.4 Phenolic Resins 153</p> <p>7.3.1.5 Polybenzoxazine Resins 153</p> <p>7.3.2 Fillers 153</p> <p>7.3.2.1 Graphite 156</p> <p>7.3.2.2 Graphene 157</p> <p>7.3.2.3 Expanded Graphite 158</p> <p>7.3.2.4 Carbon Black 158</p> <p>7.3.2.5 Carbon Nanotube 159</p> <p>7.3.2.6 Carbon Fiber 160</p> <p>7.4 The Manufacturing Process of Thermoset-Based Composite BPs 162</p> <p>7.4.1 Compression Molding 162</p> <p>7.4.2 The Selective Laser Sintering Process 163</p> <p>7.4.3 Wet and Dry Method 164</p> <p>7.4.4 Resin Vacuum Impregnation Method 164</p> <p>7.5 Effect of Processing Parameters on the Properties Thermoset-Based Composite BPs 166</p> <p>7.5.1 Compression Molding Parameters 166</p> <p>7.5.1.1 Pressure 166</p> <p>7.5.1.2 Temperature 168</p> <p>7.5.1.3 Time 169</p> <p>7.5.2 The Mixing Time Effect on the Properties of Composite Bipolar Plates 170</p> <p>7.6 Effect of Polymer Type, Filler Type, and Composition on Properties of Thermoset Composite BPs 170</p> <p>7.6.1 Electrical Properties 171</p> <p>7.6.2 Mechanical Properties 173</p> <p>7.6.3 Thermal Properties 174</p> <p>7.7 Testing and Characterization of Polymer Composite-Based BPs 176</p> <p>7.7.1 Electrical Analysis 176</p> <p>7.7.1.1 In-Plane Electrical Conductivity 176</p> <p>7.7.1.2 Through-Plane Electrical Conductivity 189</p> <p>7.7.2 Thermal Analysis 190</p> <p>7.7.2.1 Thermal Gravimetric Analysis 190</p> <p>7.7.2.2 Differential Scanning Calorimetry 190</p> <p>7.7.2.3 Thermal Conductivity 191</p> <p>7.7.3 Mechanical Analysis 192</p> <p>7.7.3.1 Flexural Strength 192</p> <p>7.7.3.2 Tensile Strength 192</p> <p>7.7.3.3 Compressive Strength 193</p> <p>7.8 Conclusions 193</p> <p>Abbreviations 194</p> <p>References 195</p> <p><b>8 Metal-Organic Framework Membranes for Proton Exchange Membrane Fuel Cells 213<br /> </b><i>Yashmeen, Gitanjali Jindal and Navneet Kaur</i></p> <p>8.1 Introduction 213</p> <p>8.2 Aluminium Containing MOFs for PEMFCs 216</p> <p>8.3 Chromium Containing MOFs for PEMFCs 217</p> <p>8.4 Copper Containing MOFs for PEMFCs 224</p> <p>8.5 Cobalt Containing MOFs for PEMFCs 225</p> <p>8.6 Iron Containing MOFs for PEMFCs 227</p> <p>8.7 Nickel Containing MOFs for PEMFCs 230</p> <p>8.8 Platinum Containing MOFs for PEMFCs 230</p> <p>8.9 Zinc Containing MOFs for PEMFCs 232</p> <p>8.10 Zirconium Containing MOFs for PEMFCs 234</p> <p>8.11 Conclusions and Future Prospects 239</p> <p>References 240</p> <p><b>9 Fluorinated Membrane Materials for Proton Exchange Membrane Fuel Cells 245<br /> </b><i>Pavitra Rajendran, Valmiki Aruna, Gangadhara Angajala and Pulikanti Guruprasad Reddy</i></p> <p>Abbreviations 246</p> <p>9.1 Introduction 247</p> <p>9.2 Fluorinated Polymeric Materials for PEMFCs 250</p> <p>9.3 Poly(Bibenzimidazole)/Silica Hybrid Membrane 250</p> <p>9.4 Poly(Bibenzimidazole) Copolymers Containing Fluorine-Siloxane Membrane 252</p> <p>9.5 Sulfonated Fluorinated Poly(Arylene Ethers) 253</p> <p>9.6 Fluorinated Sulfonated Polytriazoles 255</p> <p>9.7 Fluorinated Polybenzoxazole (6F-PBO) 257</p> <p>9.8 Poly(Bibenzimidazole) With Poly(Vinylidene Fluoride-Co-Hexafluoro Propylene) 258</p> <p>9.9 Fluorinated Poly(Arylene Ether Ketones) 259</p> <p>9.10 Fluorinated Sulfonated Poly(Arylene Ether Sulfone) (6fbpaqsh-xx) 260</p> <p>9.11 Fluorinated Poly(Aryl Ether Sulfone) Membranes Cross-Linked Sulfonated Oligomer (c-SPFAES) 261</p> <p>9.12 Sulfonated Poly(Arylene Biphenylether Sulfone)- Poly(Arylene Ether) (SPABES-PAE) 261</p> <p>9.13 Conclusion 266</p> <p>Conflicts of Interest 266</p> <p>Acknowledgements 267</p> <p>References 267</p> <p><b>10 Membrane Materials in Proton Exchange Membrane Fuel Cells (PEMFCs) 271<br /> </b><i>Foad Monemian and Ali Kargari</i></p> <p>10.1 Introduction 271</p> <p>10.2 Fuel Cell: Definition and Classification 272</p> <p>10.3 Historical Background of Fuel Cell 273</p> <p>10.4 Fuel Cell Applications 274</p> <p>10.4.1 Transportation 275</p> <p>10.4.2 Stationary Power 275</p> <p>10.4.3 Portable Applications 275</p> <p>10.5 Comparison between Fuel Cells and Other Methods 278</p> <p>10.6 PEMFCs: Description and Characterization 280</p> <p>10.6.1 Ion Exchange Capacity–Conductivity 281</p> <p>10.6.2 Durability 281</p> <p>10.6.3 Water Management 282</p> <p>10.6.4 Cost 282</p> <p>10.7 Membrane Materials for PEMFC 282</p> <p>10.7.1 Statistical Copolymer PEMs 283</p> <p>10.7.2 Block and Graft Copolymers 286</p> <p>10.7.3 Polymer Blending and Other PEM Compounds 289</p> <p>10.8 Conclusions 296</p> <p>References 296</p> <p><b>11 Nafion-Based Membranes for Proton Exchange Membrane Fuel Cells 299<br /> </b><i>Santiago Pablo Fernandez Bordín, Janet de los Angeles Chinellato Díaz and Marcelo Ricardo Romero</i></p> <p>11.1 Introduction: Background 300</p> <p>11.2 Physical Properties 302</p> <p>11.3 Nafion Structure 304</p> <p>11.4 Water Uptake 307</p> <p>11.5 Protonic Conductivity 310</p> <p>11.6 Water Transport 316</p> <p>11.7 Gas Permeation 319</p> <p>11.8 Final Comments 324</p> <p>Acknowledgements 324</p> <p>References 325</p> <p><b>12 Solid Polymer Electrolytes for Proton Exchange Membrane Fuel Cells 331<br /> </b><i>Nitin Srivastava and Rajendra Kumar Singh</i></p> <p>12.1 Introduction 331</p> <p>12.2 Type of Fuel Cells 334</p> <p>12.2.1 Alkaline Fuel Cells 334</p> <p>12.2.2 Polymer Electrolyte Fuel Cells 335</p> <p>12.2.3 Phosphoric Acid Fuel Cells 337</p> <p>12.2.4 Molten Carbonate Fuel Cells 338</p> <p>12.2.5 Solid Oxide Fuel Cells 338</p> <p>12.3 Basic Properties of PEMFC 339</p> <p>12.4 Classification of Solid Polymer Electrolyte Membranes for PEMFC 341</p> <p>12.4.1 Perfluorosulfonic Membrane 341</p> <p>12.4.2 Partially Fluorinated Polymers 343</p> <p>12.4.3 Non-Fluorinated Hydrocarbon Membrane 344</p> <p>12.4.4 Nonfluorinated Acid Membranes With Aromatic Backbone 344</p> <p>12.4.5 Acid Base Blend 344</p> <p>12.5 Applications 345</p> <p>12.5.1 Application in Transportation 346</p> <p>12.6 Conclusions 347</p> <p>References 347</p> <p><b>13 Computational Fluid Dynamics Simulation of Transport Phenomena in Proton Exchange Membrane Fuel Cells 353<br /> </b><i>Maryam Mirzaie and Mohamadreza Esmaeilpour</i></p> <p>13.1 Introduction 354</p> <p>13.2 PEMFC Simulation and Mathematical Modeling 356</p> <p>13.2.1 Governing Equations 359</p> <p>13.2.1.1 Continuity Equation 359</p> <p>13.2.1.2 Momentum Equation 360</p> <p>13.2.1.3 Mass Transfer Equation 360</p> <p>13.2.1.4 Energy Transfer Equation 362</p> <p>13.2.1.5 Equation of Charge Conservation 362</p> <p>13.2.1.6 Formation and Transfer of Liquid Water 362</p> <p>13.3 The Solution Procedures 363</p> <p>13.3.1 CFD Simulations 363</p> <p>13.3.2 OpenFOAM 374</p> <p>13.3.3 Lattice Boltzmann 381</p> <p>13.4 Conclusions 389</p> <p>References 390</p> <p>Index 395</p>
<p><b>Inamuddin,</b> PhD, is an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 19 book chapters, and 145 edited books with multiple well-known publishers, including Scrivener Publishing.He is a member of various editorial boards for scientific and technical journals and is an editor on several of them in different capacities.</p> <p><b>Omid Moradi,</b> PhD, is an associate professor in the Department of Chemistry, Islamic Azad University, Shahre Qods Branch, Shahre-Qods, Tehran, Iran. He received his PhD in physical chemistry in 2009 from the Science and Research Branch, Islamic Azad University, Iran. He is ranked among the world’s top 2% of scientists according to Stanford University rankings in 2020, and he is the director-in-chief of a technical journal in chemistry.</p> <p><b>Mohd Imran Ahamed,</b> PhD, has co-edited more than 20 books and has published numerous research and review articles in scientific and technical journals. He received his PhD from Aligarh Muslim University, Aligarh, India in 2019. His research work includes ion-exchange chromatography, wastewater treatment and analysis, bending actuators, and electrospinning.</p>
<p><b>Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel.</b> <p>Proton exchange membrane fuel cells (PEMFCs) are among the most anticipated stationary clean energy devices in renewable and alternative energy. Despite the appreciable improvement in their cost and durability, which are the two major commercialization barriers, their availability has not matched demand. This is mainly due to the use of expensive metal-catalyst, less durable membranes, and poor insight into the ongoing phenomena inside proton exchange membrane fuel cells. Efforts are being made to optimize the use of precious metals as catalyst layers or find alternatives that can be durable for more than 5000 hours. <p>Computational models are also being developed and studied to get an insight into the shortcomings and provide solutions. The announcement by various companies that they will be producing proton exchange membrane fuel cells-based cars by 2025 has accelerated the current research on proton exchange membrane fuel cells. The breakthrough is urgently needed. The membranes, catalysts, polymer electrolytes, and especially the understanding of diffusion layers, need thorough revision and improvement to achieve the target. This exciting breakthrough volume explores these challenges and offers solutions for the industry. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
213,99 €
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
96,29 €