Die Wurzeln des Menschen

Patrick Roberts

Die Wurzeln des Menschen

Wie der Dschungel die Erde formte,
das menschliche Leben hervorbrachte
und unsere Zukunft bestimmt

Aus dem Englischen
von Sebastian Vogel

dtv Verlagsgesellschaft mbH & Co. KG, München

Über Patrick Roberts

Dr. Patrick Roberts, Jahrgang 1991, Anthropologe und Archäologe, ist Gruppenleiter am Max-Planck-Institut für Menschheitsgeschichte in Jena. Er gilt als ein Pionier der Tropenforschung und reiste für seine Arbeit, für die er zahlreiche internationale Auszeichnungen erhielt, bisher u.a. ins Amazonasbecken, nach Sri Lanka und Australien. Roberts’ Forschungen werden mit verschiedenen international renommierten Stipendien gefördert. Als Mitglied mehrerer Gremien der UNESCO hat Patrick Roberts Ideen für die nachhaltige Nutzung der Regenwälder entwickelt.

Über das Buch

Ohne die tropischen Wälder würde die Welt, wie wir sie heute kennen, nicht existieren. Trotzdem ist ihre Bedeutung für die Entwicklung des Lebens kaum bekannt. Sie formten nicht nur die Atmosphäre, die Wasserkreisläufe und die Böden unseres Planeten und wurden zur Heimat der ersten Blütenpflanzen und der ersten vierbeinigen Landtiere. Sie spielten auch eine entscheidende Rolle bei der Evolution des Menschen.

Der Anthropologe und Archäologe Patrick Roberts rückt die tropischen Wälder folgerichtig ins Zentrum seiner Geschichte der Erde und der Menschheit. Er nimmt uns mit in den Dschungel und gewährt faszinierende Einblicke in neueste Forschungsmethoden, die offenbaren: Afrikanische Tropenwälder waren die belaubten Wiegen der ersten Homininen und eine der vielfältigen Umgebungen, in denen sich der Homo sapiens entwickelte, bevor er nahezu alle Kontinente besiedelte. Tropische Wälder beheimateten die größten vorindustriellen Städte.

Und: Unsere heutige Weltordnung und der vom Menschen verursachte Klimawandel haben ihren Ursprung in der Ausbeutung der Tropen durch westliche »Entdecker« seit der Mitte des letzten Jahrtausends.

Patrick Roberts plädiert eindrücklich dafür, diese majestätischen Ökosysteme zu bewahren, bestimmen sie doch unser Leben und unsere Zukunft, ganz gleich, ob wir in den Tropen leben oder nicht.

Impressum

Deutsche Erstausgabe 2021

dtv Verlagsgesellschaft mbH & Co. KG, München

© 2021 by Patrick Roberts

Titel der englischen Originalausgabe:

Jungle. How Tropical Forests Shaped the World – and Us.

Viking, Penguin Random House, 2021

© dtv Verlagsgesellschaft mbH & Co. KG, München

Redaktion: Susanne Warmuth

Umschlaggestaltung: hißmann, heilmann, hamburg unter Verwendung eines Motivs von Tatsiana Volskaya/Getty Images und shutterstock.com

 

Das Werk ist urheberrechtlich geschützt. Jede Verwertung ist nur mit Zustimmung des Verlags zulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

 

Die Funktionalität von Web-Links wurde zum Zeitpunkt der Drucklegung (E-Book-Erstellung) geprüft. Für Inhalte von Webseiten Dritter, auf die in diesem Werk verwiesen wird, ist stets der jeweilige Anbieter oder Betreiber verantwortlich, wir übernehmen dafür keine Gewähr. Rechtswidrige Inhalte waren zum Zeitpunkt der Verlinkungen nicht erkennbar.

 

eBook-Herstellung: Fotosatz Amann, Memmingen (01)

 

eBook ISBN 978-3-423-43949-7 (epub)

ISBN der gedruckten Ausgabe 978-3-423-28297-0

ISBN (epub) 9783423439497

Endnoten

Domínguez-Rodrigo, M. (2014), Is the »Savanna Hypothesis« a dead concept for explaining the emergence of the earliest hominins? Current Anthropology 55(1): 5981.

Mellars, P. (2006), Why did modern human populations disperse from Africa ca.60000 years ago? A new model. Proceedings of the National Academy of Sciences of the United States of America 103: 93819386.

Meggers, B.J. (1971), Amazonia: Man and Culture in a Counterfeit Paradise. Illinois: Harlan Davidson.

Turnbull, C. (1961), The Forest People: A Study of the Pygmies of the Congo. New York: Simon & Schuster [dt. Molimo: Drei Jahre bei den Pygmäen. Üb.v. G. Schönmann. Köln: Kiepenheuer und Witsch, 1963].

Watson, J.E.M., Evans, T., Venter, O., et al. (2018), The exceptional value of intact forest ecosystems. Nature Ecology and Evolution 2: 599610.

Ghazoul, J. (2015), Forests: A Very Short Introduction. Oxford: Oxford University Press.

Spracklen, D.V., Arnold, S.R., Taylor, C.M. (2012), Observations of increased tropical rainfall preceded by air passage over forests. Nature 489: 282285.

Malhi, Y. (2010), The carbon balance of tropical forest regions, 19902005. Current Opinions in Environmental Sustainability 2: 237244.

Curry, A. (2016), »Green hell« has long been home for humans. Science, 354: 268269.

Pimm, S.L., Raven, P. (2000), Extinction by numbers. Nature 403: 843845.

Wann immer möglich, nenne ich den Namen, den sich eine indigene Gemeinschaft selbst gibt.

Roberts, P., Buhrich, A., Caetano-Andrade, V.L., et al. (2021), Reimagining the relationship between Gondwanan forests and Aboriginal land management in Australia’s »Wet Tropics«. IScience 24: 102190. Doi: https://doi.org/10.1016/j.isci.2021.102190.

Vandenbrink, J.P., Brown, E.A., Harmer, S.L., Blackman, B.K. (2014), Turning heads: The biology of solar tracking in sunflower. Plant Science 224: 2026.

Appel, H.M., Cocroft, R.B. (2014), Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175: 12571266.

Hughes, S. (1990), Antelope activate the acacia’s alarm system. New Scientist. https://www.newscientist.com/article/mg12717361-200-antelope-activate-the-acacias-alarm-system/?ignored=irrelevant.

Yuan Song, Y., Simard, S.W., Carroll, A., et al. (2015), Defoliation of interior Douglas-fir elicits carboin transfer and stress signalling to ponderosa pine neighbours through ctomycorrhizal networks. Nature Scientific Reports 5: https://doi.org/10.1038/srep08495.

Wohlleben, P. (2015), Das geheime Leben der Bäume: Was sie fühlen, wie sie kommunizieren – die Entdeckung einer verborgenen Welt. München: Ludwig.

Die offiziellen Zahlen für erdgeschichtliche Zeiträume verändern sich, wenn neue Schichtungen gefunden werden und die Datierungsgenauigkeit steigt. Die Daten, die in diesem Buch für offiziell anerkannte geologische Zeiträume wie das Kambrium genannt werden, folgen den Bänden 1 und 2 der neuesten Ausgabe von Geologic Time Scale 2020 (Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., The Geologic Time Scale 2020, Amsterdam: Elsevier, 2020). Dieses Standardwerk wird von vielen Paläontologen und Geologen genutzt. Es wird regelmäßig auf der Grundlage neuer Informationen aktualisiert. Bei »inoffiziellen« Unterteilungen (z.B. »frühes Kambrium«) entsprechen die Daten der jeweils genannten wissenschaftlichen Literatur, oder sie wird in einer Anmerkung erläutert. Im Fall des »frühen Kambriums« habe ich die in den Anmerkungen 7 und 8 genannten Daten mit neuen Zahlen für den Beginn des Kambriums (vor 538,8 Millionen Jahren) und der Grenze in der Mitte des Kambriums zwischen der Epoche 2 und dem Wuliuum (509,0 Millionen Jahre) nach der neuesten Ausgabe von Gradstein et al. (2020) kombiniert.

Paterson, J.R., Edgecombe, G.D., Lee, M.S.Y. (2019), Trilobite evolutionary rates constrain the duration of the Cambrian explosion. Proceedings of the National Academy of Sciences of the United States of America 116: 43944399.

Collette, J.H., Hagadorn, J.W. (2010), Three-dimensionally preserved arthropods from Cambrian lagerstätten of Quebec and Wisconsin. Journal of Palaeontology 84: 646667.

Beck, H.E., Zimmermann, N.E., McVicar, T.R., et al. (2018), Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5: 180214.

Lenton, T.M., Daines, S.J., Mills, B.J.W. (2018), COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178: 128.

Mills, B.J.W., Krause, A.J., Scotese, C.R., et al. (2019), Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproteozoic to present day. Gondwana Research 67: 172186.

Bergman, N.M., Lenton, T.M., Watson, A.J. (2004), COPSE: A new model of biogeochemical cycling over Phanerozoic time. American Journal of Science 304: 397437.

Lenton, Daines, Mills (2018), COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time.

Bergman, Lenton, Watson (2004), COPSE: A new model of biogeochemical cycling over Phanerozoic time.

Ruhfel, B.R., Gitzendanner, M.A., Soltis, P.S., et al. (2014), From algae to angiosperms – inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evolutionary Biology 14: DOI: https://doi.org/10.1186/1471-2148-1423.

Berner, R.A. (2006), GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochima Acta 70: 56535664.

Shimamura, M. (2016), Marchantia polymorpha: Taxonomy, phylogeny and morphology of a model system. Plant and Cell Physiology 57: 230256.

Rubinstein, C.V., Gerrienne, P., de la Puente G.S., et al. (2010), Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188: 365369.

Retallack, G.J. (2020), Ordovician land plants and fungi from Douglas Dam, Tennessee. The Palaeobotanist 68: https://cpb-us-e1.wpmucdn.com/blogs.uoregon.edu/dist/d/3735/files/2020/09/Retallack-2020-Ordovician-land-plants.pdf.

Edwards, D., Feehan, J. (1980), Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature 287: 4142.

Renzaglia, K.S., Nickrent, D.L., Garbary, D.J., et al. (2000), Vegetative and reproductive innovations of early land plants: Implications for a unified phylogeny. Philosophical Transactions of the Royal Society of London B Series: Biological Sciences 355: 769793.

Clarke, J.T., Warnock, R.C.M., Donoghue, P.C.J. (2011), Establishing a time-scale for plant evolution. New Phytologist 192: 266301.

Ebd.

Ebd.

Puttick, M.N., Morris, J.L., Williams, T.A., et al. (2018), The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biology 28: 733745.

Morris, J.L., Puttick, M.N., Clark, J.W., et al. (2018), The timescale of early land plant evolution. Proceedings of the National Academy of Sciences of the United States of America 115: E2274–E2283.

Ebd.

Puttick, Morris, Williams, The interrelationships of land plants and the nature of the ancestral embryophyte.

Morris, Puttick, Clark, The timescale of early land plant evolution.

Sheldrake, M. (2020), Entangled Life: How Fungi Make Our Worlds, Change Our Minds & Shape Our Futures. London: Random House [dt. Verwobenes Leben: Wie Pilze unsere Welt formen und unsere Zukunft beeinflussen. Üb.v. S. Vogel. Berlin: Ullstein, 2020].

Popkin, G. (2019), »Wood wide web« – the underground network of microbes that connects trees – mapped for the first time. Science: doi:10.1126/science.aay0516.

Steidinger, B.S., Crowther, T.W., Liang, J., et al., GFBI consortium (2019), Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569: 404408.

Taylor, T.N., Remy, W., Hass, H., Kerp, H. (1995), Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87: 560573.

Rimington, W.R., Pressel, S., Duckett, J.G., et al. (2018), Ancient plants with ancient fungi: liverworts associate with early-diverging arbuscular mycorrhizal fungi. Proceedings of the Royal Society B-Series: Biological Sciences 285: https://doi.org/10.1098/rspb.2018.1600.

Field, K.J., Pressel, S., Duckett, J.G., et al. (2015), Symbiotic options for the conquest of land. Trends in Ecology and Evolution 30: 477486.

NASA (2016), Carbon dioxide fertilization greening Earth, study finds. https://www.nasa.gov/feature/goddard/2016/carbon-dioxide-fertilization-greening-earth

Lenton, T.M., Crouch, M., Johnson, M., et al. (2012), First plants cooled the Ordovician. Nature Geoscience 5: 8689.

Lenton, T.M., Rockström, J., Gaffney, O., et al. (2019), Climate tipping points – too risky to bet against. Nature 575: 592596.

Lenton, Crouch, Johnson et al., First plants cooled the Ordovician.

Ebd.

Kotyk, M.E., Basinger, J.F., Gensel, P.G., de Freitas, T.A. (2002), Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada. American Journal of Botany 89: 10041013.

Petit, R.J., Hampe, A. (2006), Some evolutionary consequences of being a tree. Annual Review of Ecology Evolution and Systematics 37: 187214.

Goldring, W. (1927), The oldest known petrified forest. Science Monthly 24: 514529.

Stein, W.E., Mannolini, F., VanAller Hernick, L., et al. (2007), Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest fossil stumps at Gilboa. Nature 446: 904907.

Stein, W.E., Berry, C.M., Hernick, L.V., Mannolini, F. (2012), Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483: 7881.

Stein, W.E., Berry, C.M., Morris, J.L., et al. (2020), Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Current Biology 30: 421431.e2.

Ebd.

Retallack, G.J., Huang, C. (2011), Ecology and evolution of Devonian trees in new York, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 299: 110128.

Stein, Berry, Morris et al., Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests.

Meter-Berthaud, B., Scheckler, S.E., Bousquet, J.-L. (2000), The development of Archaeopteris: new evolutionary characters from the structural analysis of an Early Famennian trunk from southeast Morocco. American Journal of Botany 87: 456468.

Guo, Y., Wang, D.-M. (2011), Anatomical reinvestigation of Archaeopteris macilenta from the Upper Devonian (Frasnian) of South China. Journal of Systematics and Evolution 49: 590597.

Morris, J.L., Leake, J.R., Stein, W.E., et al. (2015), Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58: 78780.

Averill, C., Turner, B.L., Finzi, A.C. (2014), Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505: 543545.

Morris, Leake, Stein et al., Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology.

Algeo, T.J., Scheckler, S.E. (2010), Land plant evolution and weathering rate changes in the Devonian. Journal of Earth Science 21: 7578.

Lenton, Daines, Mills, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time.

Isaacson, P.E., Díaz-Martínez, E., Grader, G.W., et al. (2008), Late Devonian-earliest Mississippian glaciation in Gondwanalan and its biogeographic consequences. Palaeogeography, Palaoeclimatology, Palaeoecology 268: 126142.

Ghazoul, J., Sheil, D. (2010), Tropical Rain Forest Ecology, Diversity, and Conservation. Oxford: Oxford University Press.

Cleal, C.J., Oplustil, S., Thomas, B.A., Tenchov, Y. (2009), Pennsylvanian vegetation and climate in Variscan Euramaerica. Episodes 34: 312.

Ghazoul, Sheil, Tropical Rain Forest Ecology, Diversity and Conservation.

Thomas, B.A., Clearl, C.J. (2017), Arborescent lycophyte growth in the late Carboniferous coal swamps. New Phytologist 218: 885890.

Wilson, J.P., Montañez, I.P., White, J.D., et al. (2017), Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate. New Phytologist 215: 13331353.

Prestianni, C., Rustán, J.J., Balseiro, D., et al. (2015), Early seed plants from Western Gondwana: Paleobiological and ecological implications based on Tournaisian (Lower Carboniferous) records from Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 417: 210219.

Retallack, G.J., Germanheins, J. (1994), Evidence from Paleosols for the geological antiquity of rainforest. Science 265: 499502.

Wright, V.P. (2018), An early carboniferous humus from South Wales preserved by marine hydromorphic entombment. Applied Soil Ecology 123: 668671.

Lenton, Daines, Mills, COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time.

Puttick, Morris, Williams, The interrelationships of land plants and the nature of the ancestral embryophyte.

Edwards, D., Kerp, H., Hass, H. (1998), Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany 49: 225278.

Duckett, J.G., Pressel, S. (2018), The evolution of the stomatal apparatus: interceullular spaces and sporophyte water relations in bryophytes – two ignored dimensions. Philosophical Transactions of the Royal Society of London B-Series: Biological Sciences 373: 20160498.

Ruszala, E.M., Beerling, D.J., Franks, P.J., et al. (2011), Land plants acquired active stomatal control early in their evolutionary history. Current Biology 21: 10301035.

Garrouste, R., Clément, G., Nel, P., et al. (2012), A complete insect from the Late Devonian period. Nature 488: 8285.

Harrison, J.F., Kaiser, A., VandenBrooks, J.M. (2010), Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B Series: Biological Sciences 277: 19371946.

Meade, L., Jones, A.S., Butler, R.J. (2016), A revision of tetrapod footprints from the late Carboniferous of the West Midlands, UK. PeerJ 4: e2718, https://doi.org/10.7717/peerj.2718.

Ebd.

Ebd.

Ebd.

Whitmore, T.C. (1998), An Introduction to Tropical Rainforests (2.A.). Oxford: Oxford University Press.

Maslin, M. (2005), The longevity and resilience of the Amazon rainforest. In Y. Malhi, O. Phillips (Hrsg.), Tropical Forests & Global Atmospheric Change. Oxford: Oxford University Press, 167182.

Morley, R.J. (2000), Origin and Evolution of Tropical Rain Forests. Chichester: John Wiley and Sons.

Tabor, N.J., Poulsen, C.J. (2008), Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitutdes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology 268: 293310.

Corlett, R.T., Primack, R. (2011), Tropical Rain Forests: An Ecological and Biogeographical Comparison. London: Wiley-Blackwell.

Basset, Y., Cizek, L., Cuénoud, P., et al. (2019), Arthropod diversity in a tropical forest. Science 338: 14811484.

Campos-Arceiz, A., Blake, S. (2011), Megagardeners of the forest – the role of elephants in seed dispersal. Acta Oecologia 37: 542553.

DRYFLOR et al. (2015), Plant diversity patterns in neotropical dry forests and their conservation implications. Science 353: 13831387.

Walker, R., Lewis, R., Mandimbihasina, A., et al. (2014), The conservation of the world’s most threatened tortoise: the ploughshare tortoise (Astochelys yniphora) of Madagascar. Testudo 8: 6875.

Cascales-Miñana, B., Cleal, C.J. (2014), The plant fossil record reflects just two great extinction events. Terra Nova 26: 195200.

Barnosky, A.D., Matzke, N., Tomiya, S., et al. (2011), Has the Earth’s sixth mass extinction already arrived? Nature 471: 5157.

Morley, Origin and Evolution of Tropical Rain Forests.

Cleal, C.J., Opluštil, S., Thomas, B.A., Tenchov, Y. (2009), Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica. Netherlands Journal of Geosciences 88: 181278.

Montañez, I.P., Tabor, N.J., Niemeier, D., et al. (2007), CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science 314: 8791.

Cleal, Opluštil, Thomas, Tenchov, Late Moscovian terrestrial biotas and palaeoenvironments of Variscan Euramerica.

Benton, M.J., Tverdokhlebov, V.P., Surkov, M.V. (2004), Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432: 97100.

Cascales-Miñana, Cleal, The plant fossil record reflects just two great extinction events.

Linkies, A., Graeber, K., Knight, C., Leubner-Metzger, G. (2010), The evolution of seeds. New Phytologist 186: 817831.

Looy, C.V., Brugman, W.A., Dilcher, D.L., Visscher, H. (1999), The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proceedings of the National Academy of Sciences of the United States of America 96: 1385713862.

Schneebeli-Hermann, E., Hochuli, P.A., Bucher, H., et al. (2012), Palynology of the Lower Triassic succession of Tulong, South Tibet – Evidence for early recovery of gymnosperms. Palaeogeography, Palaeoclimatology, Palaeoecology 339341: 1224.

Frohlich, M.W., Chase, M.W. (2007), After a dozen years of progress the origin of the angiosperms is still a great mystery. Nature 450: 11841189.

Doyle, J. (2012), Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth Planetary Science 40: 301326.

Morley, R.J. (2011), Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In M.B. Bush, J.R. Flenley, W.D. Gosling (Hrsg.), Tropical Rainforest Responses to Climatic Change. Berlin: Springer-Verlag, 134.

Silvestro, D., et al. (2021), Fossil data support a pre-Cretaceous origin of flowering plants. Nature Ecology and Evolution, https://doi.org/10.1038/s41559-020-013878.

Feild, T.S., Arens, N.C., Doyle, J.A., et al. (2004), Dark and disturbed: A new image of early angiosperm ecology. Paleobiology 30: 82107.

Davis, C.C., Webb, C.O., Wurdack, K.J., et al. (2005), Explosive radiation supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist 165: E36–E65.

Morley, Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests.

Boyce, C.K., Jung-Eun, L. (2010), An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings of the Royal Society B-Series: Biological Sciences 485: 17.

Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (2020), The Geologic Time Scale (1. A.), Bd. 1 und 2, Amsterdam: Elsevier.

Coiro, M., Doyle, J.A., Hilton, J. (2019), How deep is the conflict between molecular and fossil evidence on the age of angiosperms?, New Phytologist, 223: 8399.

Ghazoul, J. (2016), Dipterocarp Biology, Ecology, and Conservation. Oxford: Oxford University Press.

Hu, S., Dilcher, D.L., Jarzen, D.M., Taylor, D.W. (2008), Early steps of angiosperm-pollinator coevolution. Proceedings of the National Academy of Sciences of the United States of America 105: 240245.

Duperon-Laudoueneix, M. (1991), Importance of fossil woods (conifers and angiosperms) discovered in continental Mesozoic sediments of northern equatorial Africa. Journal of African Earth Sciences 12: 391396.

Wing, S.L., et al. (2009), Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106: 1862718632.

Ebd.

Head, J.J., et al. (2009), Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457: 715717.

Johnson, K.R., Ellis, B. (2002). A tropical rainforest in Colorado 1.4 Million Years after the Cretaceous-Tertiary boundary. Science 296: 23792383.

Morley, Origin and Evolution of Tropical Rain Forests.

Morley, R.J. (2003), Interplate dispersal routes for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics 6: 520.

Morley, Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests.

Goldner, A., Herold, N., Huber, M. (2014), Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature 511: 574577.

Dupont-Nivet, G., Hoorn, C., Konert, M. (2008), Tibetan uplift prior to the Eocene-Oligocene climate transition. Evidence from pollen analysis of the Xining Basin. Geology 36: 987990.

Prasad, V., Strömberg, C.A.E., Alimohammadian, H., Sahni, A. (2005), Dinosaur coprolites and the early evolution of grasses and grazers. Science 310: 11771180.

Osborne, C.O. (2008), Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? Journal of Ecology 96: 3545.

Metcalfe, S.E., Nash, D.J. (2012), Introduction. In S.E. Metcalfe, D.J. Nash (Hrsg.), Quaternary Environmental Change in the Tropics. London: John Wiley & Sons Ltd, 133.

Deplazes, G., Lückge, A., Peterson, L.C., et al. (2013), Links between tropical rainfall and North Atlantic climate during the last glacial period. Nature Geoscience 3: 213217.

Hamon, N., Spulchre, P., Donnadieu, Y., et al. (2012), Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume. Geology 40: 567570.

Cerling, T.E., Wang, Y., Quade, J. (1993), Expansion of C4 ecosystems as an indictor of global ecological change in the late Miocene. Nature 361: 344345.

Feakins, S.J., Levin, N.E., Liddy, H.M., et al. (2013), Northeast African vegetation change over 12 m.y. Geology 41: 295298.

Hamon, Spulchre, Donnadieu et al., Growth of subtropical forests in Miocene Europe.

Salzmann, U., Haywood, A.M., Lunt, D.J., et al. (2008), A new global biome reconstruction and data-model comparison for the middle Pliocene. Global Ecology and Biogeography 17: 432447.

Martínez-Botí, M.A., Foster, G.L., Chalk, T.B., et al. (2015), Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518: 4954.

Bobe, R., Behrensmeyer, A.K. (2004), The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology 207: 399420.

Heaney, L.R. (1991), A synopsis of climatic and vegetational change in Southeast Asia. Tropical Forests and Climate. Climatic Change 19: 5361.

Dennell, R.W., Roebroeks, W. (2005), Out of Africa: An Asian perspective on early human dispersal from Africa. Nature 438: 10991104.

Heaney, A synopsis of climatic and vegetabional change in Southeast Asia.

Roberts, P. (2019), Tropical Forests in Prehistory, History, and Modernity. Oxford: Oxford University Press.

Corlett, R.T. (2011), Climate change in the tropics: The end of the world as we know it. Biological Conservation 151: 2225.

Hooghiemstra, H., Van der Hammen, T. (1998), Neogene and Quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-science Reviews 44: 147183.

Rabett, R.J. (2012), Human Adaptation in the Asian Palaeolithic. Cambridge: Cambridge University Press.

Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M., Sachs, J.P. (2002), El Niño-like pattern in ice age tropical Pacific sea surface temperature. Science 297: 226230.

Pausata, F.S.R., Messori, G., Zhang, Q. (2016), Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth and Planetary Science Letters 434: 298307.

Turner, A.H., Makovicky, P.J., Norell, M.A. (2007), Feather quill knobs in the dinosaur Velociraptor. Science 317: 1721.

Brusatte, S. (2018), The Rise and Fall of the Dinosaurs. London: Picador [dt. Aufstieg und Fall der Dinosaurier. Üb.v. N. de Palézieux. München: Piper, 2018].

Barrett, P.M., Rayfield, E.J. (2006), Ecological and evolutionary implications of dinosaur feeding behaviour. TRENDS in Ecology and Evolution 21: 217224.

Hummel, J., Gee, C.T., Südekum, K.-H., et al. (2008), In vitro digestibility of fern and gymnosperm foligae: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B Series: Biological Sciences 275: https://doi.org/10.1098/rspb.2007.1728.

Colbert, E.H. (1993), Feeding strategies and metabolism in elephants and sauropod dinosaurs. American Journal of Science 293A: 110.

The Paleobiology Database. https://paleobiodb.org/#/

Dunne, E.M., Close, R.A., Button, D.J., et al. (2018), Diversity change during the rise of tetrapods and the impact of the »Carboniferous rainforest collapse«. Proceedings of the Royal Society B: Biological Sciences 285: https://doi.org/10.1098/rspb.2017.2730.

Irmis, R.B., Nesbitt, S.J., Padian, K., et al. (2007), A Late Triassic dinosauromorph assemblage from New Mexico and the rise of the dinosaurs. Science 317: 358361.

Whiteside, J.H., Grogan, D.S., Olsen, P.E., Kent, D.V. (2011), Climatically driven biogeographic provinces of Late Triassic tropical Pangea. Proceedings of the National Academy of Sciences of the United States of America 108: 89728977.

Whiteside, J.H., Lindström, S., Irmis, R.B., et al. (2015), Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years. Proceedings of the National Academy of Sciences of the United States of America 112: 79097913.

Salgado, L., Canudo, J.I., Garrido, A., et al. (2017), A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents. Nature Scientific Reports 7: 42778.

Han, F., Forster, C.A., Xu, X., Clark, J.M. (2017), Postcranial anatomy of Yinlong downsi (Dinosauria: Ceratopsia) from the Upper Jurassic Shishugou Formation of China and the phylogeny of basal ornithischians. Journal of Systematic Palaeontology 16: 11591187.

van de Schootbrugge, B., Quan, T.M., Lindström, S., et al. (2009), Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geoscience 2: 589594.

Volkheimer W., Rauhut O.W.M., Quattrocchio M.E., Martínez, M.A. (2008), Jurassic paleoclimates in Argentina, a review. Revista de la Asociación Geológica Argentina 63: 549556.

Van Der Meer, D.G., Zeebe, R.E., van Hinsbergen, D.J.J., et al. (2014), Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proceedings of the National Academy of Sciences of the United States of America 111: 43804385.

Yonetani, T., Gordon, H.B. (2001), Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO2 is doubled. Journal of Climate 14: 17651779.

Upchurch, P., Barett, P.M. (2000), The evolution of sauropod feeding mechanisms. In H-D. (Hrsg.), Evolution of herbivory in terrestrial vertebrates: Perspectives from the fossil record. Cambridge: Cambridge University Press, 79122.

Hummel, J., Clauss, M. (2011), Feeding and digestive physiology. In N. Klein, K. Remes, C.T. Gee, P.M. Sander (Hrsg.), Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Bloomington: Indiana University Press, 1133.

Sander, P.M., Christian, A., Clauss, M., et al. (2011), Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86: 117155.

Gee, C.T. (2011), Dietary options for the Sauropod dinosaurs from an integrated botanical and paleobotanical perspective. In N. Klein, K. Remes, C.T. Gee, P.M. Sander (Hrsg.), Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Indiana: Indiana University Press, 3457.

Ebd.

Upchurch, P., Barrett, P.M. (2005), Phylogenetic and taxic perspectives on sauropod diversity. In K.A. Curry Rogers, J.A. Wilson (Hrsg.), The sauropods. Evolution and paleobiology. Berkeley: University of California Press, 104124.

Poulsen, J.R., Rosin, C., Meier, A., et al. (2018), Ecological consequences of forest elephant declines for Afrotropical forests. Conservation Biology 32: 559567.

Mustoe, G.E. (2007), Coevolution of cycads and dinosaurs. The Cycad Newsletter 30: 69.

Leslie, A. (2011), Predation and protection in the macroevolutionary history of conifer cones. Proceedings of the Royal Society B: Biological Sciences 278, DOI: 10.1098/rspb.2010.2648.

Butler, R.J., Barrett, P.M., Kenrick, P., Penn, M.G. (2009), Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads. Biological Reviews 84: 7389.

Bakker, R.T. (1978), Dinosaur feeding behaviour and the origin of flowering plants. Nature 274: 661663.

Weishampel, D.B., Norman D.B. (1989), Vertebrate herbivory in the Mesozoic; jaws, plants, and evolutionary metrics. Geological Society of America Special Paper 238: 87101.

Barrett, P.M., Willis, K.J. (2001), Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews: 76: 411447.

Ebd.

Ebd.

Weishampel, D.B., Jianu, C.-M. (2000), Plant-eaters and ghost lineages : dinosaurian herbivory revisited. In H.-D. Sues (Hrsg.), Evolution of Herbivory in Terrestrial Vertebrates: Perspectives from the Fossil Record. Cambridge: Cambridge University Press, 123143.

Erickson, G.M., Krick, B.A., Hamilton, M., et al. (2012), Complex dental structure and wear biomechanics in Hadrosaurid dinosaurs. Science 338: 98101.

Molnar, R.E., Clifford, H.T. (2000), Gut contents of a small ankylosaur. Journal of Vertebrate Palaeontology 20: 194196.

Poulsen, J.R., Rosin, C., Meier, A., et al. (2018), Ecological consequences of forest elephant declines for Afrotropical forests.

Godefroit, P., Golovneva, L., Shcheptov, S., Garcia, G., Alekseev, P. (2009), The last polar dinosaurs: high diversity of latest Cretaceous arctic dinosaurs in Russia. Naturwissenschaften 96: 495501.

Paik, I.S., Kim, H.J., Huh, M. (2012), Dinosaur egg deposits in the Cretaceous Gyeongsang Supergroup, Korea: Diversity and paleobiological implications. Journal of Asian Earth Sciences 56: 135146.

Voeten, D.F.A.E., Cubo, J., de Margerie, E., et al. (2018), Wing bone geometry reveals active flight in Archaeopteryx. Nature Communications 9: 923, doi: 10.1038/s41467-018-032968.

Barrowclough, G.F., Cracraft, J., Klicka, J., Zink, R.M. (2016), How many kinds of birds are there and why does it matter? PLoS ONE 11: e0166307, doi: 10.1371/journal.pone.0166307.

Dehling, D.M., Peralta, G., Bender, I.M.A., et al. (2020), Similar composition of functional roles in Andean seed-dispersal networks, despite high species and interaction turnover. Ecology, Ecological Society of America 101: e03028, doi: 10.1002/ecy.3028.

Gorchov, D.L., Cornejo, F., Ascorra, C., Jaramillo, M. (1993), The role of seed dispersal in the natural regeneration of rain forest after strip-cutting in the Peruvian Amazon. Vegetatio 107: 339349.

David, J.P., Manakadan, R., Ganesh, T. (2015), Frugivory and seed dispersal by birds and mammals in the coastal tropical dry evergreen forests of southern India: A review. Tropical Ecology 56: 4155.

McConkey, K.R., Meehan, H.J., Drake, D.R. (2004), Seed dispersal by Pacific pigeons (Ducula pacifica) in Tonga, western Polynesia. Emu – Austral Ornitohology 104: 369376.

Bregman, T., Lees, A.C., MacGregor, H.E.A., et al. (2016), Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proceeding of the Royal Society B: Biological Sciences 283: 20161289, http://dx.doi.org/10.1098/rspb.2016.1289.

Janis, C.M. (1993), Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology, Evolution, and Systematics 14: 467500.

Li, J., Wang, Y., Wang, Y., Li, C. (2001), A new family of primitive mammal from the Mesozoic of western Liaoning, China. Chinese Science Bulletin 46: 782785.

Gore, R. (2020), The Rise of Mammals. National Geographic. https://www.nationalgeographic.com/science/prehistoric-world/rise-mammals/.

Lab Animal, 45: 133: https://doi.org/10.1038/laban.981.

Lockyer, C. (1976), Body weights of some species of large whales. Journal Du Conseil Permanent International Pour L’exploration De La Mer 36: 259273.

Renne, P.R., Sprain, C.J., Richards, M.A., et al. (2015), State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350: 7678.

Barnosky, A.D., Matzke, N., Tomiya, S., et al. (2011), Has the Earth’s sixth mass extinction already arrived? Nature 471: 5157.

Smith, F.A., Boyer, A.G., Brown, J.H., et al. (2010), The evolution of maximum body size of terrestrial mammals. Science 330: 12161219.

Wiejers, J.W.H., Scouten, S., Sluijs, A., et al. (2007), Warm arctic continents during the Palaeocene-Eocene thermal maximum. Earth and Planetary Science Letters 261: 230238.

Sarkar, S., Basak, C., Frank, M., et al. (2019), Late Eocene onset of the Proto-Antarctic Circumpolar Current. Scientific Reports 9: https://doi.org/10.1038/s41598-019-462531.

Zachos, J., Pagani, M., Sloan, L., et al. (2001), Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.

Retallack, G. (2001), Cenozoic expansion of grasslands and climatic cooling. The Journal of Geology 109: 407426.

Rogers, C.S., Hone, D.W.E., McNamara, M.E., et al. (2015), The Chinese Pompeii? Death and destruction of dinosaurs in the Early Cretaceous of Lujiatun, NE China. Palaeogeography, Palaeoclimatology, Palaeoecology 427: 8999.

Zhang, F., Kearns, S.L., Orr, P.J., et al. (2010), Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463: 10751078.

Chen, P.-J., Dong, Z.-M., Zhen, S.-N. (1998), An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391: 147152.

Luo, Z-X., Yuan, C.-X., Meng, Q.-J., Ji, Q. (2011), A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442445.

Ebd.

Rink, W.J., Thompson, J.W. (2015), Encyclopedia of Scientific Dating Methods. Dordrecht (NL): Springer.

Luo, Yuan, Meng,Ji, A Jurassic eutherian mammal and divergence of marsupials and placentals.

Maor, R., Dayan, T., Ferguson-Gow, H., Jones, K.E. (2017), Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nature Ecology and Evolution 1: 18891895.

Bhullar, B.-A.S., Manafzadeh, A.R., Miyamae, J.A., et al. (2019), Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function. Nature 566: 528532.

Rowe, T.B., Macrini, T.E., Luo, Z.-X. (2011), Fossil evidence on origin of the mammalian brain. Science 332: 955957.

Gill, P.G., Purnell, M.A., Crumpton, N., et al. (2014), Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512: 303305.

dos Reis, M., Inoue, J., Hasegawa, M., et al. (2012), Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proceedings of the Royal Society B Series: Biological Sciences 279: 34913500.

Zheng, X., Bi, S., Wang, X., Meng, J. (2013), A new arboreal haramiyid shows the diversity of crown mammals in the Jurassic period. Nature 500: 199203.

Luo, Z-X., Ji, Q., Wible, J.R., Yuan, C-X. (2003), An early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 19341940.

Ji, Q., Luo, Z.-X., Yuan, C.-X., Wible, J.R., et al. (2002), The earliest known eutherian mammal. Nature 416: 816822.

Maor, Dayan, Ferguson-Gow, Jones, Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction.

Grossnickle, D.M., Smith, S. M., Wilson, G.O. (2019), Untangling the multiple ecological radiations of early mammals. Trends in Ecology and Evolution 34: 936949.

Luo, Yuan, Meng, Ji, A Jurassic eutherian mammal and divergence of marsupials and placentals.

Ebd.

Shattuck, M.R., Williams, S.A. (2010), Arboreality has allowed for the evolution of increased longevity in mammals. Proceedings of the National Academy of Sciences of the United States of America 107: 46354639.

Meng, Q.J., Ji, Q., Zhang, Y.-G., Liu, D., et al. (2015), An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347: 764768.

Ji, Q., Luo, Z.-X., Yuan, C.-X., Tabrum, A.R. (2006), A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311: 11231127.

Meng, Q.-J., Grossnickle, D.M., Liu, D., et al. (2017), New gliding mammaliaforms from the Jurassic. Nature 548: 291296.

Ebd.

Luo, Z.-X., Meng, Q.-J., Grossnickle, D.M., et al. (2017), New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548: 326329.

Hu, Y., Meng, J., Wang, Y., Li, C. (2005), Large Mesozoic mammals fed on young dinosaurs. Nature 433: 149152.

Grossnickle, Smith, Wilson, Untangling the multiple ecological radiations of early mammals.

Grossnickle, D.M., Newham, E. (2016), Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary. Proceedings of the Royal Society B Series: Biological Sciences 283: https://doi.org/10.1098/rspb.2016.0256.

Chen, M., Strömberg, C.A.E., Wilson, G.P. (2019), Assembly of modern mammal community structure driven by Late Cretaceous dental evolution, rise of flowering plants, and dinosaur demise. Proceedings of the National Academy of Sciences of the United States of America 116: 99319940.

Sun, G., Ji, Q., Dilcher, D.L., et al. (2002), Archaefructaceae, a new basal angiosperm family. Science 296: 899904.

Wilson, G.P., Evans, A.R., Corfe, I.J., et al. (2012), Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483: 457460.

Ebd.

Lyson, T.R., Miller, I.M., Bercovici, A.D., et al. (2019), Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction. Science 366: 977983.

Ebd.

Nichols, D.J., Johnson, K.R. (2008), Plants and the K-T Boundary. Cambridge: Cambridge University Press.

Cascales-Miñana, B., Cleal, C.J. (2014), The plant fossil record reflects just two great extinction events. Terra Nova 26: 195200.

Kowalczyk, J.B., Royer, D.L., Miller, I.M., et al. (2018), Multiple proxy estimates of atmospheric CO2 from an early Paleocene rainforest. Paleoceanography and Paleoclimatology 33: 14271438.

Lyson, Miller, Bercovici et al., Exceptional continental record of biotic recovery after the Cretaceous-Paleogene mass extinction.

Ebd.

Huurdeman, E.P., Frieling, J., Reichgelt, T., et al. (2020), Rapid expansion of meso-megathermal rain forests into the southern high latitudes at the onset of the Paleocene-Eocene Thermal Maximum. Geology, https://doi.org/10.1130/G47343.1.

Janis, C.M. (1989), A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32: 463481.

Prothero, D.R., Foss, S.E. (Hrsg.) (2007), The Evolution of Artiodactyls. Baltimore, Maryland: Johns Hopkins University Press.

Gingerich, P.D., ul Haq, M., Zalmout, I.S., et al. (2001), Origin of whales from early Artiodactyls: Hands and feet of Eocene Protocetidae from Pakistan. Science 293: 22392242.

Schaal, S., Ziegler, W. (1989), Messel: Ein Schaufenster in die Geschichte der Erde und des Lebens. Frankfurt am Main: Kramer.

Collinson, M.E., Manchester, S.R., Wilde, V., Hayes, P. (2010), Fruit and seed floras from exceptionally preserved biotas in the European Paleogene. Bulletin of Geosciences 85: 155162.

Jordano, P. (2000), Fruits and frugivory. In M. Fenner (Hrsg.), The Ecology of Regeneration in Plant Communities. Wallingford: CAB International, 125166.

Eriksson, O. (2008), Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. International Journal of Plant Sciences 169: 863870.

Tiffney, B.H. (1984), Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Annals of the Missouri Botanical Garden 71: 551576.

Kargaranbafghi, F., Neubauer, F. (2018), Tectonic forcing to global cooling and aridification at the Eocene-Oligocene transition in the Iranian plateau. Global and Planetary Change 171: 248254.

Solounias, N., Semprebon, G. (2002), Advances in the reconstruction of ungulate ecomorphology with applications to early fossil equids. American Museum Novitates 3366: 149.

Semprebon, G.M., Rivals, F., Janis, C.M. (2019), The role of grass vs. exogenous abrasives in the paleodietary patterns of North American ungulates. Frontiers in Ecology and Evolution, https://doi.org/10.3389/fevo.2019.00065.

Ebd.

Semprebon, G.M., Rivals, F., Solounias, N., Hulbert Jr. R.C. (2016), Paleodietary reconstruction of fossil horses from the Eocene through Pleistocene of North America. Palaeogeography, Palaeoclimatology, Palaeoecology 442: 110127.

Badlangana, N.L., Adams, J.W., Manger, P.R. (2009), The giraffe (Giraffa cameloparadlis) cervical vertebral column: a heuristic example in understanding evolutionary processes? Zoological Journal of the Linnean Society 155: 736757.

Mitchell, G., Skinner, J.D. (2003), On the origin, evolution and phylogeny of giraffes. Giraffa camelopardalis. Transactions of the Royal Society of South Africa 58: 5173.

Dumont, E.R., Dávalaos, L.M., Goldberg, A., et al. (2011), Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society B Series: Biological Sciences 279: https://doi.org/10.1098/rspb.2011.2005.

Eriksson, O. (2014), Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews 91: 168186.

Shilton, L.A., Altringham, J.D., Compton, S.G., Whittaker, R.J. (1999), Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proceedings of the Royal Society of London B Series: Biological Sciences 266: doi: https://doi.org/10.1098/rspb.1999.0625.

Beard, K.C., Qi, T., Dawson, M.R., et al. (1994), A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China. Nature 368: 604609.

Sussman, R.W., Rasmussen, D.T., Raven, P.H. (2013), Rethinking primate origin again. American Journal of Primatology 75: 95106.

Whiten, A., Goodall, J., McGrew, W.C., et al. (1999), Cultures in chimpanzees. Nature 399: 682685.

The Chimpanzee Sequencing and Analysis Consortium (2005), Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 6987.

Darwin, C. (2004, 1871), The descent of man, and selection in relation to sex. London: Penguin [dt. Die Abstammung des Menschen. Wiesbaden: Fourier, 1966].

Domínguez-Rodrigo, M. (2014), Is the »Savanna Hypothesis« a dead concept for explaining the emergence of the earliest hominins? Current Anthropology 55(1): 5981.

Dennell R.W., Roebroeks, W. (2005), Out of Africa: An Asian perspective on early human dispersal from Africa. Nature 438: 10991104.

Hamon, N., Spulchre, P., Donnadieu, Y., et al. (2012), Growth of subtropical forests in Miocene Europe: The roles of carbon dioxide and Antarctic ice volume. Geology 40: 567570.

Schätzung auf Grundlage von MODIS (Moderate Resolution Imaging Spectroradiometer) Land Cover MCD12Q1, mehrheitliche Landbedeckung Typ 1, Klasse 2, für 2012 (räumliche Auflösung 500 m). Download vom US Geological Survey Earth Resources Observation System (EROS) Data Center (EDC).

Ebd.

9 Nelson, S. (2003), The extinction of Sivapithecus: faunal and environmental changes in the Siwaliks of Pakistan. American School of Prehistoric Research Monographs, Bd. 1. Boston: Brill Academic Publishers.

Macchiarelli, R., Bergeret-Medina, A., Marchi, D., Wood, B. (2020), Nature and relationships of Sahelanthropus tchadensis. Journal of Human Evolution 149: https://doi.org/10.1016/j.jhevol.2020.102898.

White, T., Asfaw, B., Beyene, Y., et al. (2009), Ardipithecus ramidus and the Paleobiology of Early hominids. Science 326: 7586.

Ebd.

Haile-Selassie, Y., Suwa, G., White, T.D. (2004), Late Miocene teeth from Middle Awash, Ethiopia, and early hominid dental evolution. Science 303: 15031505.

Prado-Martinez, J., Sudmant, P.H., Kidd, J.M., et al. (2013), Great ape genetic diversity and population history. Nature 499: 471475.

White, T.D., Lovejoy, C.O., Asfaw, B., et al. (2015), Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Sciences of the United States of America 112: 48774884.

WoldeGabriel, G., Ambrose, S.H., Barboni, D., et al. (2009Ardipithecus ramidus. Science326594965655