Details

Optical Networking Best Practices Handbook


Optical Networking Best Practices Handbook


1. Aufl.

von: John R. Vacca

148,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 28.11.2006
ISBN/EAN: 9780470075050
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<i>Optical Networking Best Practices Handbook</i> presents optical networking in a very comprehensive way for nonengineers needing to understand the fundamentals of fiber, high-capacity, high-speed equipment and networks, and upcoming carrier services. The book provides a practical understanding of fiber optics as a physical medium, sorting out single-mode versus multi-mode and the crucial concept of Dense Wave-Division Multiplexing.
<p>Foreword xxi</p> <p>Preface xxiii</p> <p>Acknowledgments xxix</p> <p><b>1 Optical Networking Fundamentals 1</b></p> <p>1.1 Fiber Optics: A Brief History in Time 1</p> <p>1.1.1 The Twentieth Century of Light 2</p> <p>1.1.2 Real World Applications 6</p> <p>1.1.3 Today and Beyond 7</p> <p>1.2 Distributed IP Routing 7</p> <p>1.2.1 Models: Interaction Between Optical Components and IP 8</p> <p>1.2.1.1 Overlay Model 8</p> <p>1.2.1.2 Augmented/Integrated Model 9</p> <p>1.2.1.3 Peer Model 9</p> <p>1.2.2 Lightpath Routing Solution 9</p> <p>1.2.2.1 What Is an IGP? 10</p> <p>1.2.2.2 The Picture: How Does MPLS Fit? 10</p> <p>1.2.3 OSPF Enhancements/IS-IS 10</p> <p>1.2.3.1 Link Type 10</p> <p>1.2.3.2 Link Resource/Link Media Type (LMT) 11</p> <p>1.2.3.3 Local Interface IP Address and Link ID 11</p> <p>1.2.3.4 Traffic Engineering Metric and Remote Interface IP Address 11</p> <p>1.2.3.5 TLV Path Sub 11</p> <p>1.2.3.6 TLV Shared Risk Link Group 12</p> <p>1.2.4 IP Links, Control Channels, and Data Channels 12</p> <p>1.2.4.1 Excluding Data Traffic From Control Channels 12</p> <p>1.2.4.2 Adjacencies Forwarding 12</p> <p>1.2.4.3 Connectivity Two Way 13</p> <p>1.2.4.4 LSAs of the Optical Kind 13</p> <p>1.2.5 Unsolved Problems 13</p> <p>1.3 Scalable Communications: Integrated Optical Networks 14</p> <p>1.3.1 The Optical Networks 14</p> <p>1.3.2 The Access Network 15</p> <p>1.3.3 Management and Service 15</p> <p>1.3.3.1 The Operations Support System 16</p> <p>1.3.4 Next-Generation IP and Optical Integrated Network 16</p> <p>1.3.4.1 IP and Optical Integrated Network Migration 16</p> <p>1.4 Lightpath Establishment and Protection in Optical Networks 19</p> <p>1.4.1 Reliable Optical Networks: Managing Logical Topology 21</p> <p>1.4.1.1 The Initial Phase 21</p> <p>1.4.1.2 The Incremental Phase 22</p> <p>1.4.1.3 The Readjustment Phase 23</p> <p>1.4.2 Dimensioning Incremental Capacity 23</p> <p>1.4.2.1 Primary Lightpath: Routing and Wavelength Assignment 24</p> <p>1.4.2.2 Reconfiguring the Backup Lightpaths: Optimization Formulation 24</p> <p>1.5 Optical Network Design Using Computational Intelligence Techniques 25</p> <p>1.6 Distributed Optical Frame Synchronized Ring (doFSR) 26</p> <p>1.6.1 Future Plans 28</p> <p>1.6.2 Prototypes 28</p> <p>1.7 Summary and Conclusions 29</p> <p>1.7.1 Differentiated Reliability in Multilayer Optical Networks 29</p> <p>1.7.2 The Demands of Today 31</p> <p><b>2 Types of Optical Networking Technology 33</b></p> <p>2.1 Use of Digital Signal Processing 36</p> <p>2.1.1 DSP in Optical Component Control 36</p> <p>2.1.2 Erbium-Doped Fiber Amplifier Control 37</p> <p>2.1.3 Microelectromechanical System Control 37</p> <p>2.1.4 Thermoelectric Cooler Control 38</p> <p>2.2 Optical Signal Processing for Optical Packet Switching Networks 40</p> <p>2.2.1 Packet Switching in Today’s Optical Networks 41</p> <p>2.2.2 All-Optical Packet Switching Networks 42</p> <p>2.2.3 Optical Signal Processing and Optical Wavelength Conversion 45</p> <p>2.2.4 Asynchronous Optical Packet Switching and Label Swapping Implementations 46</p> <p>2.2.5 Sychronous OTDM 48</p> <p>2.3 Next-Generation Optical Networks as a Value Creation Platform 49</p> <p>2.3.1 Real Challenges in the Telecom Industry 54</p> <p>2.3.2 Changes in Network Roles 54</p> <p>2.3.3 The Next-Generation Optical Network 56</p> <p>2.3.4 Technological Challenges 58</p> <p>2.3.4.1 Technological Innovations in Devices, Components, and Subsystems 58</p> <p>2.3.4.2 Technological Innovations in Transmission Technologies 58</p> <p>2.3.4.3 Technological Innovations in Node Technologies 59</p> <p>2.3.4.4 Technological Innovations in Networking Software 60</p> <p>2.4 Optical Network Research in the IST Program 61</p> <p>2.4.1 The Focus on Broadband Infrastructure 62</p> <p>2.4.2 Results and Exploitation of Optical Network Technology Research and Development Activities in the EU Framework Programs of the RACE Program (1988–1995) 64</p> <p>2.4.2.1 The Acts Program (1995–1999) 65</p> <p>2.4.3 The Fifth Framework Program: The IST Program 1999–2002 66</p> <p>2.4.3.1 IST Fp5 Optical Networking Projects 66</p> <p>2.4.3.2 The Lion Project: Layers Interworking in Optical Networks 67</p> <p>2.4.3.3 Giant Project: GigaPON Access Network 68</p> <p>2.4.3.4 The David Project: Data and Voice Integration Over WDM 68</p> <p>2.4.3.5 WINMAN Project: WDM and IP Network Management 68</p> <p>2.4.4 Optical Network Research Objectives in the Sixth Framework Program (2002–2009) 69</p> <p>2.4.4.1 Strategic Objective: Broadband for All 69</p> <p>2.4.4.2 Research Networking Testbeds 70</p> <p>2.4.4.3 Optical, Optoelectronic, and Photonic Functional Components 70</p> <p>2.4.4.4 Calls for Proposals and Future Trends 71</p> <p>2.5 Optical Networking in Optical Computing 71</p> <p>2.5.1 Cost Slows New Adoptions 73</p> <p>2.5.2 Bandwidth Drives Applications 73</p> <p>2.5.3 Creating a Hybrid Computer 74</p> <p>2.5.4 Computing with Photons 75</p> <p>2.6 Summary and Conclusions 76</p> <p><b>3 Optical Transmitters 78</b></p> <p>3.1 Long-Wavelength VCSELs 81</p> <p>3.1.1 1.3-µm Vcsels 82</p> <p>3.1.1.1 GaInNAs-Active Region 84</p> <p>3.1.1.2 GaInNAsSb Active Region 84</p> <p>3.1.1.3 InGaAs Quantum Dots–Active Region 84</p> <p>3.1.1.4 GaAsSb-Active Region 85</p> <p>3.1.2 1.55-µM Wavelength Emission 85</p> <p>3.1.2.1 Dielectric Mirror 85</p> <p>3.1.2.2 AlGaAsSb DBR 85</p> <p>3.1.2.3 InP/Air-Gap DBR 86</p> <p>3.1.2.4 Metamorphic DBR 86</p> <p>3.1.2.5 Wavelength-Tunable 1.55-µm VCSELs 87</p> <p>3.1.2.6 Other Tunable Diode Lasers 88</p> <p>3.1.3 Application Requirements 88</p> <p>3.1.3.1 Point-To-Point Links 89</p> <p>3.1.3.2 Wavelength-Division Multiplexed Applications 89</p> <p>3.2 Multiwavelength Lasers 89</p> <p>3.2.1 Mode-locking 90</p> <p>3.2.2 WDM Channel Generation 92</p> <p>3.2.3 Comb Flattening 93</p> <p>3.2.4 Myriad Applications 93</p> <p>3.3 Summary and Conclusions 94</p> <p><b>4 Types of Optical Fiber 95</b></p> <p>4.1 Strands and Processes of Fiber Optics 95</p> <p>4.2 The Fiber-Optic Cable Modes 95</p> <p>4.2.1 The Single Mode 96</p> <p>4.2.2 The Multimode 96</p> <p>4.3 Optical Fiber Types 97</p> <p>4.3.1 Fiber Optics Glass 97</p> <p>4.3.2 Plastic Optical Fiber 97</p> <p>4.3.3 Fiber Optics: Fluid-Filled 97</p> <p>4.4 Types of Cable Families 97</p> <p>4.4.1 The Multimodes: OM1 and OM 2 98</p> <p>4.4.2 Multimode: OM 3 98</p> <p>4.4.3 Single Mode: VCSEL 98</p> <p>4.5 Extending Performance 98</p> <p>4.5.1 Regeneration 98</p> <p>4.5.2 Regeneration: Multiplexing 98</p> <p>4.5.3 Regeneration: Fiber Amplifiers 99</p> <p>4.5.4 Dispersion 99</p> <p>4.5.5 Dispersion: New Technology—Graded Index 99</p> <p>4.5.6 Pulse-Rate Signals 99</p> <p>4.5.7 Wavelength Division Multiplexing 99</p> <p>4.6 Care, Productivity, and Choices 100</p> <p>4.6.1 Handle with Care 100</p> <p>4.6.2 Utilization of Different Types of Connectors 100</p> <p>4.6.3 Speed and Bandwidth 100</p> <p>4.6.4 Advantages over Copper 101</p> <p>4.6.5 Choices Based on Need: Cost and Bandwidth 101</p> <p>4.7 Understanding Types of Optical Fiber 101</p> <p>4.7.1 Multimode Fiber 103</p> <p>4.7.1.1 Multimode Step-Index Fiber 103</p> <p>4.7.1.2 Multimode Graded-Index Fiber 104</p> <p>4.7.2 Single-Mode Fiber 105</p> <p>4.8 Summary and Conclusions 106</p> <p><b>5 Carriers’ Networks 108</b></p> <p>5.1 The Carriers’ Photonic Future 108</p> <p>5.2 Carriers’ Optical Networking Revolution 111</p> <p>5.2.1 Passive Optical Networks Evolution 112</p> <p>5.2.1.1 APONs 113</p> <p>5.2.1.2 EPONs 113</p> <p>5.2.2 Ethernet PONs Economic Case 114</p> <p>5.2.3 The Passive Optical Network Architecture 116</p> <p>5.2.4 The Active Network Elements 116</p> <p>5.2.4.1 The CO Chassis 117</p> <p>5.2.4.2 The Optical Network Unit 117</p> <p>5.2.4.3 The EMS 118</p> <p>5.2.5 Ethernet PONs: How They Work 118</p> <p>5.2.5.1 The Managing of Upstream/Downstream Traffic in an EPON 118</p> <p>5.2.5.2 The EPON Frame Formats 120</p> <p>5.2.6 The Optical System Design 121</p> <p>5.2.7 The Quality of Service 122</p> <p>5.2.8 Applications for Incumbent Local-Exchange Carriers 124</p> <p>5.2.8.1 Cost-Reduction Applications 124</p> <p>5.2.8.2 New Revenue Opportunities 125</p> <p>5.2.8.3 Competitive Advantage 126</p> <p>5.2.9 Ethernet PONs Benefits 126</p> <p>5.2.9.1 Higher Bandwidth 127</p> <p>5.2.9.2 Lower Costs 127</p> <p>5.2.9.3 More Revenue 128</p> <p>5.2.10 Ethernet in the First-Mile Initiative 128</p> <p>5.3 Flexible Metro Optical Networks 129</p> <p>5.3.1 Flexibility: What Does It Mean? 129</p> <p>5.3.1.1 Visibility 129</p> <p>5.3.1.2 Scalability 130</p> <p>5.3.1.3 Upgradability 130</p> <p>5.3.1.4 Optical Agility 130</p> <p>5.3.2 Key Capabilities 130</p> <p>5.3.3 Operational Business Case 132</p> <p>5.3.4 Flexible Approaches Win 133</p> <p>5.4 Summary and Conclusions 133</p> <p><b>6 Passive Optical Components 137</b></p> <p>6.1 Optical Material Systems 139</p> <p>6.1.1 Optical Device Technologies 144</p> <p>6.1.2 Multifunctional Optical Components 155</p> <p>6.2 Summary and Conclusions 158</p> <p><b>7 Free-Space Optics 160</b></p> <p>7.1 Free-Space Optical Communication 160</p> <p>7.2 Corner-Cube Retroreflectors 162</p> <p>7.2.1 CCR Design and Fabrication 163</p> <p>7.2.1.1 Structure-Assisted Assembly Design 163</p> <p>7.2.1.2 Fabrication 163</p> <p>7.3 Free-Space Heterochronous Imaging Reception 165</p> <p>7.3.1 Experimental System 167</p> <p>7.4 Secure Free-Space Optical Communication 168</p> <p>7.4.1 Design and Enabling Components of a Transceiver 168</p> <p>7.4.2 Link Protocol 169</p> <p>7.5 The Minimization of Acquisition Time 170</p> <p>7.5.1 Configuration of the Communication System 171</p> <p>7.5.2 Initiation–Acquisition Protocol 173</p> <p>7.5.2.1 Phase 1 173</p> <p>7.5.2.2 Phase 2 174</p> <p>7.5.2.3 Phase 3 174</p> <p>7.6 Summary and Conclusions 175</p> <p><b>8 Optical Formats: Synchronous Optical Network (SONET)/ Synchronous Digital Hierarchy (SDH), and Gigabit Ethernet 179</b></p> <p>8.1 Synchronous Optical Network 179</p> <p>8.1.1 Background 180</p> <p>8.1.2 Synchronization of Digital Signals 180</p> <p>8.1.3 Basic SONET Signal 181</p> <p>8.1.4 Why Synchronize: Synchronous versus Asynchronous 182</p> <p>8.1.4.1 Synchronization Hierarchy 182</p> <p>8.1.4.2 Synchronizing SONET 182</p> <p>8.1.5 Frame Format Structure 183</p> <p>8.1.5.1 STS-1 Building Block 183</p> <p>8.1.5.2 STS-1 Frame Structure 183</p> <p>8.1.5.3 STS-1 Envelope Capacity and Synchronous Payload Envelope 184</p> <p>8.1.5.4 STS-1 SPE in the Interior of STS- 1 Frames 185</p> <p>8.1.5.5 STS-N Frame Structure 186</p> <p>8.1.6 Overheads 186</p> <p>8.1.6.1 Section Overhead 187</p> <p>8.1.6.2 Line Overhead 187</p> <p>8.1.6.3 VT POH 188</p> <p>8.1.6.4 SONET Alarm Structure 189</p> <p>8.1.7 Pointers 192</p> <p>8.1.7.1 VT Mappings 192</p> <p>8.1.7.2 Concatenated Payloads 192</p> <p>8.1.7.3 Payload Pointers 194</p> <p>8.1.7.4 VTs 196</p> <p>8.1.7.5 STS-1 VT1.5 SPE Columns 198</p> <p>8.1.7.6 DS-1 Visibility 198</p> <p>8.1.7.7 VT Superframe and Envelope Capacity 202</p> <p>8.1.7.8 VT SPE and Payload Capacity 202</p> <p>8.1.8 SONET Multiplexing 203</p> <p>8.1.9 SONET Network Elements: Terminal Multiplexer 204</p> <p>8.1.9.1 Regenerator 205</p> <p>8.1.9.2 Add/Drop Multiplexer (ADM) 205</p> <p>8.1.9.3 Wideband Digital Cross-Connects 206</p> <p>8.1.9.4 Broadband Digital Cross-Connect 207</p> <p>8.1.9.5 Digital Loop Carrier 207</p> <p>8.1.10 SONET Network Configurations: Point to Point 208</p> <p>8.1.10.1 Point-to-Multipoint 209</p> <p>8.1.10.2 Hub Network 209</p> <p>8.1.10.3 Ring Architecture 209</p> <p>8.1.11 What Are the Benefits of SONET? 209</p> <p>8.1.11.1 Pointers, MUX/DEMUX 211</p> <p>8.1.11.2 Reduced Back-to-Back Multiplexing 211</p> <p>8.1.11.3 Optical Interconnect 211</p> <p>8.1.11.4 Multipoint Configurations 211</p> <p>8.1.11.5 Convergence, ATM, Video3, and SONET 212</p> <p>8.1.11.6 Grooming 213</p> <p>8.1.11.7 Reduced Cabling and Elimination of DSX Panels 213</p> <p>8.1.11.8 Enhanced OAM&P 213</p> <p>8.1.11.9 Enhanced Performance Monitoring 213</p> <p>8.1.12 SDH Reference 213</p> <p>8.1.12.1 Convergence of SONET and SDH Hierarchies 214</p> <p>8.1.12.2 Asynchronous and Synchronous Tributaries 215</p> <p>8.2 Synchronous Digital Hierarchy 215</p> <p>8.2.1 SDH Standards 216</p> <p>8.2.2 SDH Features and Management: Traffic Interfaces 217</p> <p>8.2.2.1 SDH Layers 217</p> <p>8.2.2.2 Management Functions 217</p> <p>8.2.3 Network Generic Applications: Evolutionary Pressures 218</p> <p>8.2.3.1 Operations 218</p> <p>8.2.4 Network Generic Applications: Equipment and Uses 218</p> <p>8.2.5 Cross-Connect Types 221</p> <p>8.2.6 Trends in Deployment 221</p> <p>8.2.7 Network Design: Network Topology 222</p> <p>8.2.7.1 Introduction Strategy for SDH 223</p> <p>8.2.8 SDH Frame Structure: Outline 223</p> <p>8.2.9 Virtual Containers 225</p> <p>8.2.10 Supporting Different Rates 225</p> <p>8.3 Gigabit Ethernet 226</p> <p>8.3.1 Gigabit Ethernet Basics 227</p> <p>8.3.2 Gigabit Ethernet Standards and Layers 228</p> <p>8.3.3 Metro and Access Standards 229</p> <p>8.4 Summary and Conclusions 230</p> <p><b>9 Wave Division Multiplexing 233</b></p> <p>9.1 Who Uses WDM? 233</p> <p>9.1.1 How is WDM Deployed? 234</p> <p>9.2 Dense Wavelength Division Multiplexed Backbone Deployment 235</p> <p>9.2.1 The Proposed Architecture 235</p> <p>9.3 IP-Optical Integration 236</p> <p>9.3.1 Control Plane Architectures 237</p> <p>9.3.2 Data Framing and Performance Monitoring 239</p> <p>9.3.3 Resource Provisioning and Survivability 240</p> <p>9.4 QoS Mechanisms 241</p> <p>9.4.1 Optical Switching Techniques 242</p> <p>9.4.1.1 Wavelength Routing Networks 242</p> <p>9.4.1.2 Optical Packet-Switching Networks 243</p> <p>9.4.1.3 Optical Burst Switching Networks 243</p> <p>9.4.2 QoS in IP-Over-WDM Networks 243</p> <p>9.4.2.1 QoS in WR Networks 244</p> <p>9.4.2.2 QoS in Optical Packet Switching Networks 245</p> <p>9.4.2.3 QOS in Optical Burst Switching Networks 246</p> <p>9.5 Optical Access Network 249</p> <p>9.5.1 Proposed Structure 250</p> <p>9.5.2 Network Elements and Prototypes 252</p> <p>9.5.2.1 OCSM 252</p> <p>9.5.2.2 OLT 252</p> <p>9.5.2.3 ONU 254</p> <p>9.5.3 Experiments 254</p> <p>9.6 Multiple-Wavelength Sources 255</p> <p>9.6.1 Ultrafast Sources and Bandwidth 255</p> <p>9.6.2 Supercontinuum Sources 256</p> <p>9.6.3 Multiple-Wavelength Cavities 257</p> <p>9.7 Summary and Conclusions 259</p> <p><b>10 Basics of Optical Switching 263</b></p> <p>10.1 Optical Switches 263</p> <p>10.1.1 Economic Challenges 263</p> <p>10.1.2 Two Types of Optical Switches 264</p> <p>10.1.3 All-Optical Switches 265</p> <p>10.1.3.1 All-Optical Challenges 266</p> <p>10.1.3.2 Optical Fabric Insertion Loss 267</p> <p>10.1.3.3 Network-Level Challenges of the All-Optical Switch 267</p> <p>10.1.4 Intelligent OEO Switches 268</p> <p>10.1.4.1 OxO 269</p> <p>10.1.5 Space and Power Savings 270</p> <p>10.1.6 Optimized Optical Nodes 271</p> <p>10.2 Motivation and Network Architectures 273</p> <p>10.2.1 Comparison 274</p> <p>10.2.1.1 Detailed Comparison 276</p> <p>10.2.1.2 Synergy Between Electrical and Photonic Switching 279</p> <p>10.2.2 Nodal Architectures 280</p> <p>10.3 Rapid Advances in Dense Wavelength Division Multiplexing Technology 282</p> <p>10.3.1 Multigranular Optical Cross-Connect Architectures 282</p> <p>10.3.1.1 The Multilayer MG-OXC 283</p> <p>10.3.1.2 Single-Layer MG-OXC 284</p> <p>10.3.1.3 An Illustrative Example 285</p> <p>10.3.2 Waveband Switching 286</p> <p>10.3.2.1 Waveband Switching Schemes 286</p> <p>10.3.2.2 Lightpath Grouping Strategy 287</p> <p>10.3.2.3 Major Benefits of WBS Networks 287</p> <p>10.3.3 Waveband Routing Versus Wavelength Routing 287</p> <p>10.3.3.1 Wavelength and Waveband Conversion 288</p> <p>10.3.3.2 Waveband Failure Recovery in MG-OXC Networks 288</p> <p>10.3.4 Performance of WBS Networks 289</p> <p>10.3.4.1 Static Traffic 289</p> <p>10.3.4.2 Dynamic Traffic 290</p> <p>10.4 Switched Optical Backbone 291</p> <p>10.4.1 Scalability 293</p> <p>10.4.2 Resiliency 293</p> <p>10.4.3 Flexibility 293</p> <p>10.4.4 Degree of Connectivity 293</p> <p>10.4.5 Network Architecture 294</p> <p>10.4.5.1 PoP Configuration 294</p> <p>10.4.5.2 Traffic Restoration 295</p> <p>10.4.5.3 Routing Methodology 297</p> <p>10.4.5.4 Packing of IP Flows onto Optical Layer Circuits 297</p> <p>10.4.5.5 Routing of Primary and Backup Paths on Physical Topology 298</p> <p>10.5 Optical MEMS 299</p> <p>10.5.1 MEMS Concepts and Switches 299</p> <p>10.5.2 Tilting Mirror Displays 301</p> <p>10.5.3 Diffractive MEMS 301</p> <p>10.5.4 Other Applications 303</p> <p>10.6 Multistage Switching System 303</p> <p>10.6.1 Conventional Three-Stage Clos Switch Architecture 305</p> <p>10.7 Dynamic Multilayer Routing Schemes 307</p> <p>10.7.1 Multilayer Traffic Engineering with a Photonic MPLS Router 309</p> <p>10.7.2 Multilayer Routing 311</p> <p>10.7.3 IETF Standardization for Multilayer GMPLS Networks Routing Extensions 313</p> <p>10.7.3.1 PCE Implementation 313</p> <p>10.8 Summary and Conclusions 314</p> <p><b>11 Optical Packet Switching 318</b></p> <p>11.1 Design for Optical Networks 321</p> <p>11.2 Multistage Approaches to OPS: Node Architectures for OPS 321</p> <p>11.2.1 Applied to OPS 322</p> <p>11.2.2 Reducing the Number of SOAs for a B&S Switch 323</p> <p>11.2.3 A Strictly Nonblocking AWG-Based Switch for Asynchronous Operation 324</p> <p>11.3 Summary and Conclusions 325</p> <p><b>12 Optical Network Configurations 326</b></p> <p>12.1 Optical Networking Configuration Flow-Through Provisioning 326</p> <p>12.2 Flow-Through Provisioning at Element Management Layer 328</p> <p>12.2.1 Resource Reservation 328</p> <p>12.2.2 Resource Sharing with Multiple NMS 328</p> <p>12.2.3 Resource Commit by EMS 328</p> <p>12.2.4 Resource Rollback by EMS 329</p> <p>12.2.5 Flow-Through in Optical Networks at EMS Level 329</p> <p>12.3 Flow-Through Circuit Provisioning in the Same Optical Network Domain 329</p> <p>12.4 Flow-Through Circuit Provisioning in Multiple Optical Network Domain 329</p> <p>12.5 Benefits of Flow-Through Provisioning 330</p> <p>12.6 Testing and Measuring Optical Networks 332</p> <p>12.6.1 Fiber Manufacturing Phase 332</p> <p>12.6.2 Fiber Installation Phase 332</p> <p>12.6.3 DWDM Commissioning Phase 333</p> <p>12.6.4 Transport Life Cycle Phase 334</p> <p>12.6.5 Network-Operation Phase 335</p> <p>12.6.6 Integrated Testing Platform 335</p> <p>12.7 Summary and Conclusions 335</p> <p><b>13 Developing Areas in Optical Networking 337</b></p> <p>13.1 Optical Wireless Networking High-Speed Integrated Transceivers 338</p> <p>13.1.1 Optical Wireless Systems: Approaches to Optical Wireless Coverage 339</p> <p>13.1.1.1 What Might Optical Wireless Offer? 339</p> <p>13.1.1.2 Constraints and Design Considerations 340</p> <p>13.1.2 Cellular Architecture 341</p> <p>13.1.3 Components and Integration Approach to Integration 341</p> <p>13.1.3.1 Optoelectronic Device Design 343</p> <p>13.1.3.2 Electronic Design 343</p> <p>13.1.3.3 Optical Systems Design and System Integration 344</p> <p>13.2 Wavelength-Switching Subsystems 344</p> <p>13.2.1 2 D MEMS Switches 345</p> <p>13.2.2 3 D MEMS Switches 346</p> <p>13.2.3 1 D MEMS-Based Wavelength-Selective Switch 346</p> <p>13.2.3.1 1 D MEMS Fabrication 346</p> <p>13.2.3.2 Mirror Control 347</p> <p>13.2.3.3 Optical Performance 348</p> <p>13.2.3.4 Reliability 349</p> <p>13.2.4 Applications: 1-D MEMS Wavelength Selective Switches 350</p> <p>13.2.4.1 Reconfigurable OADM 350</p> <p>13.2.4.2 Wavelength Cross-connect 351</p> <p>13.2.4.3 Hybrid Optical Cross-connect 352</p> <p>13.3 Optical Storage Area Networks 352</p> <p>13.3.1 The Light-Trails Solution 353</p> <p>13.3.2 Light Trails for SAN Extension 355</p> <p>13.3.3 Light-Trails for Disaster Recovery 359</p> <p>13.3.4 Grid Computing and Storage Area Networks: The Light-Trails Connection 360</p> <p>13.3.5 Positioning a Light-Trail Solution for Contemporary SAN Extension 361</p> <p>13.4 Optical Contacting 362</p> <p>13.4.1 Frit and Diffusion Bonding 362</p> <p>13.4.2 Optical Contacting Itself 363</p> <p>13.4.3 Robust Bonds 363</p> <p>13.4.4 Chemically Activated Direct Bonding 364</p> <p>13.5 Optical Automotive Systems 365</p> <p>13.5.1 The Evolving Automobile 365</p> <p>13.5.2 Media-Oriented Systems Transport 366</p> <p>13.5.3 1394 Networks 367</p> <p>13.5.4 Byteflight 367</p> <p>13.5.5 A Slow Spread Likely 368</p> <p>13.6 Optical Computing 369</p> <p>13.7 Summary and Conclusions 371</p> <p><b>14 Summary, Conclusions, and Recommendations 374</b></p> <p>14.1 Summary 374</p> <p>14.1.1 Optical Layer Survivability: Why and Why Not 374</p> <p>14.1.2 What Has Been Deployed? 376</p> <p>14.1.3 The Road Forward 377</p> <p>14.1.4 Optical Wireless Communications 377</p> <p>14.1.4.1 The First-Mile Problem 378</p> <p>14.1.4.2 Optical Wireless as a Complement to RF Wireless 379</p> <p>14.1.4.3 Frequently Asked Questions 380</p> <p>14.1.4.4 Optical Wireless System Eye Safety 380</p> <p>14.1.4.5 The Effects of Atmospheric Turbulence on Optical Links 381</p> <p>14.1.4.6 Free-Space Optical Wireless Links with Topology Control 382</p> <p>14.1.4.7 Topology Discovery and Monitoring 382</p> <p>14.1.4.8 Topology Change and the Decision- Making Process 383</p> <p>14.1.4.9 Topology Reconfiguration: A Free-Space Optical Example 383</p> <p>14.1.4.10 Experimental Results 384</p> <p>14.2 Conclusion 385</p> <p>14.2.1 Advances in OPXC Technologies 385</p> <p>14.2.1.1 The Photonic MPLS Router 386</p> <p>14.2.1.2 Practical OPXC 386</p> <p>14.2.1.3 The PLC-SW as the Key OPXC Component 386</p> <p>14.2.2 Optical Parametric Amplification 388</p> <p>14.2.2.1 Basic Concepts 388</p> <p>14.2.2.2 Variations on a Theme 389</p> <p>14.2.2.3 Applications 391</p> <p>14.3 Recommendations 391</p> <p>14.3.1 Laser-Diode Modules 392</p> <p>14.3.2 Thermoelectric Cooler 393</p> <p>14.3.3 Thermistor 395</p> <p>14.3.4 Photodiode 396</p> <p>14.3.5 Receiver Modules 397</p> <p>14.3.6 Parallel Optical Interconnects 398</p> <p>14.3.6.1 System Needs 399</p> <p>14.3.6.2 Technology Solutions 400</p> <p>14.3.6.3 Challenges and Comparisons 403</p> <p>14.3.6.4 Scalability for the Future 404</p> <p>14.3.7 Optical Storage Area Networks 405</p> <p>14.3.7.1 Storage Area Network Extension Solutions 406</p> <p>14.3.7.2 Reliability Analysis 407</p> <p>Appendix: Optical Ethernet Enterprise Case Study 415</p> <p>A. 1 Customer Profile 416</p> <p>A. 2 Present Mode of Operation 418</p> <p>A. 3 Future Mode of Operation 419</p> <p>A.3. 1 FMO 1: Grow the Existing Managed ATM Service 419</p> <p>A.3. 2 FMO 2: Managed Optical Ethernet Service 420</p> <p>A. 4 Comparing the Alternatives 421</p> <p>A.4. 1 Capability Comparison: Bandwidth Scalability 421</p> <p>A.4.1. 1 Improved Network Performance 421</p> <p>A.4.1. 2 Simplicity 421</p> <p>A.4.1. 3 Flexibility 422</p> <p>A.4. 2 Total Cost of Network Ownership Analysis 422</p> <p>A. 5 Summary and Conclusions 423</p> <p>Glossary 425</p> <p>Index 453</p> <p>Foreword xxi</p> <p>Preface xxiii</p> <p>Acknowledgments xxix</p> <p><b>1 Optical Networking Fundamentals 1</b></p> <p>1.1 Fiber Optics: A Brief History in Time 1</p> <p>1.1.1 The Twentieth Century of Light 2</p> <p>1.1.2 Real World Applications 6</p> <p>1.1.3 Today and Beyond 7</p> <p>1.2 Distributed IP Routing 7</p> <p>1.2.1 Models: Interaction Between Optical Components and IP 8</p> <p>1.2.1.1 Overlay Model 8</p> <p>1.2.1.2 Augmented/Integrated Model 9</p> <p>1.2.1.3 Peer Model 9</p> <p>1.2.2 Lightpath Routing Solution 9</p> <p>1.2.2.1 What Is an IGP? 10</p> <p>1.2.2.2 The Picture: How Does MPLS Fit? 10</p> <p>1.2.3 OSPF Enhancements/IS-IS 10</p> <p>1.2.3.1 Link Type 10</p> <p>1.2.3.2 Link Resource/Link Media Type (LMT) 11</p> <p>1.2.3.3 Local Interface IP Address and Link ID 11</p> <p>1.2.3.4 Traffic Engineering Metric and Remote Interface IP Address 11</p> <p>1.2.3.5 TLV Path Sub 11</p> <p>1.2.3.6 TLV Shared Risk Link Group 12</p> <p>1.2.4 IP Links, Control Channels, and Data Channels 12</p> <p>1.2.4.1 Excluding Data Traffic From Control Channels 12</p> <p>1.2.4.2 Adjacencies Forwarding 12</p> <p>1.2.4.3 Connectivity Two Way 13</p> <p>1.2.4.4 LSAs of the Optical Kind 13</p> <p>1.2.5 Unsolved Problems 13</p> <p>1.3 Scalable Communications: Integrated Optical Networks 14</p> <p>1.3.1 The Optical Networks 14</p> <p>1.3.2 The Access Network 15</p> <p>1.3.3 Management and Service 15</p> <p>1.3.3.1 The Operations Support System 16</p> <p>1.3.4 Next-Generation IP and Optical Integrated Network 16</p> <p>1.3.4.1 IP and Optical Integrated Network Migration 16</p> <p>1.4 Lightpath Establishment and Protection in Optical Networks 19</p> <p>1.4.1 Reliable Optical Networks: Managing Logical Topology 21</p> <p>1.4.1.1 The Initial Phase 21</p> <p>1.4.1.2 The Incremental Phase 22</p> <p>1.4.1.3 The Readjustment Phase 23</p> <p>1.4.2 Dimensioning Incremental Capacity 23</p> <p>1.4.2.1 Primary Lightpath: Routing and Wavelength Assignment 24</p> <p>1.4.2.2 Reconfiguring the Backup Lightpaths: Optimization Formulation 24</p> <p>1.5 Optical Network Design Using Computational Intelligence Techniques 25</p> <p>1.6 Distributed Optical Frame Synchronized Ring (doFSR) 26</p> <p>1.6.1 Future Plans 28</p> <p>1.6.2 Prototypes 28</p> <p>1.7 Summary and Conclusions 29</p> <p>1.7.1 Differentiated Reliability in Multilayer Optical Networks 29</p> <p>1.7.2 The Demands of Today 31</p> <p><b>2 Types of Optical Networking Technology 33</b></p> <p>2.1 Use of Digital Signal Processing 36</p> <p>2.1.1 DSP in Optical Component Control 36</p> <p>2.1.2 Erbium-Doped Fiber Amplifier Control 37</p> <p>2.1.3 Microelectromechanical System Control 37</p> <p>2.1.4 Thermoelectric Cooler Control 38</p> <p>2.2 Optical Signal Processing for Optical Packet Switching Networks 40</p> <p>2.2.1 Packet Switching in Today’s Optical Networks 41</p> <p>2.2.2 All-Optical Packet Switching Networks 42</p> <p>2.2.3 Optical Signal Processing and Optical Wavelength Conversion 45</p> <p>2.2.4 Asynchronous Optical Packet Switching and Label Swapping Implementations 46</p> <p>2.2.5 Sychronous OTDM 48</p> <p>2.3 Next-Generation Optical Networks as a Value Creation Platform 49</p> <p>2.3.1 Real Challenges in the Telecom Industry 54</p> <p>2.3.2 Changes in Network Roles 54</p> <p>2.3.3 The Next-Generation Optical Network 56</p> <p>2.3.4 Technological Challenges 58</p> <p>2.3.4.1 Technological Innovations in Devices, Components, and Subsystems 58</p> <p>2.3.4.2 Technological Innovations in Transmission Technologies 58</p> <p>2.3.4.3 Technological Innovations in Node Technologies 59</p> <p>2.3.4.4 Technological Innovations in Networking Software 60</p> <p>2.4 Optical Network Research in the IST Program 61</p> <p>2.4.1 The Focus on Broadband Infrastructure 62</p> <p>2.4.2 Results and Exploitation of Optical Network Technology Research and Development Activities in the EU Framework Programs of the RACE Program (1988–1995) 64</p> <p>2.4.2.1 The Acts Program (1995–1999) 65</p> <p>2.4.3 The Fifth Framework Program: The IST Program 1999–2002 66</p> <p>2.4.3.1 IST Fp5 Optical Networking Projects 66</p> <p>2.4.3.2 The Lion Project: Layers Interworking in Optical Networks 67</p> <p>2.4.3.3 Giant Project: GigaPON Access Network 68</p> <p>2.4.3.4 The David Project: Data and Voice Integration Over WDM 68</p> <p>2.4.3.5 WINMAN Project: WDM and IP Network Management 68</p> <p>2.4.4 Optical Network Research Objectives in the Sixth Framework Program (2002–2009) 69</p> <p>2.4.4.1 Strategic Objective: Broadband for All 69</p> <p>2.4.4.2 Research Networking Testbeds 70</p> <p>2.4.4.3 Optical, Optoelectronic, and Photonic Functional Components 70</p> <p>2.4.4.4 Calls for Proposals and Future Trends 71</p> <p>2.5 Optical Networking in Optical Computing 71</p> <p>2.5.1 Cost Slows New Adoptions 73</p> <p>2.5.2 Bandwidth Drives Applications 73</p> <p>2.5.3 Creating a Hybrid Computer 74</p> <p>2.5.4 Computing with Photons 75</p> <p>2.6 Summary and Conclusions 76</p> <p><b>3 Optical Transmitters 78</b></p> <p>3.1 Long-Wavelength VCSELs 81</p> <p>3.1.1 1.3-µm Vcsels 82</p> <p>3.1.1.1 GaInNAs-Active Region 84</p> <p>3.1.1.2 GaInNAsSb Active Region 84</p> <p>3.1.1.3 InGaAs Quantum Dots–Active Region 84</p> <p>3.1.1.4 GaAsSb-Active Region 85</p> <p>3.1.2 1.55-µM Wavelength Emission 85</p> <p>3.1.2.1 Dielectric Mirror 85</p> <p>3.1.2.2 AlGaAsSb DBR 85</p> <p>3.1.2.3 InP/Air-Gap DBR 86</p> <p>3.1.2.4 Metamorphic DBR 86</p> <p>3.1.2.5 Wavelength-Tunable 1.55-µm VCSELs 87</p> <p>3.1.2.6 Other Tunable Diode Lasers 88</p> <p>3.1.3 Application Requirements 88</p> <p>3.1.3.1 Point-To-Point Links 89</p> <p>3.1.3.2 Wavelength-Division Multiplexed Applications 89</p> <p>3.2 Multiwavelength Lasers 89</p> <p>3.2.1 Mode-locking 90</p> <p>3.2.2 WDM Channel Generation 92</p> <p>3.2.3 Comb Flattening 93</p> <p>3.2.4 Myriad Applications 93</p> <p>3.3 Summary and Conclusions 94</p> <p><b>4 Types of Optical Fiber 95</b></p> <p>4.1 Strands and Processes of Fiber Optics 95</p> <p>4.2 The Fiber-Optic Cable Modes 95</p> <p>4.2.1 The Single Mode 96</p> <p>4.2.2 The Multimode 96</p> <p>4.3 Optical Fiber Types 97</p> <p>4.3.1 Fiber Optics Glass 97</p> <p>4.3.2 Plastic Optical Fiber 97</p> <p>4.3.3 Fiber Optics: Fluid-Filled 97</p> <p>4.4 Types of Cable Families 97</p> <p>4.4.1 The Multimodes: OM1 and OM 2 98</p> <p>4.4.2 Multimode: OM 3 98</p> <p>4.4.3 Single Mode: VCSEL 98</p> <p>4.5 Extending Performance 98</p> <p>4.5.1 Regeneration 98</p> <p>4.5.2 Regeneration: Multiplexing 98</p> <p>4.5.3 Regeneration: Fiber Amplifiers 99</p> <p>4.5.4 Dispersion 99</p> <p>4.5.5 Dispersion: New Technology—Graded Index 99</p> <p>4.5.6 Pulse-Rate Signals 99</p> <p>4.5.7 Wavelength Division Multiplexing 99</p> <p>4.6 Care, Productivity, and Choices 100</p> <p>4.6.1 Handle with Care 100</p> <p>4.6.2 Utilization of Different Types of Connectors 100</p> <p>4.6.3 Speed and Bandwidth 100</p> <p>4.6.4 Advantages over Copper 101</p> <p>4.6.5 Choices Based on Need: Cost and Bandwidth 101</p> <p>4.7 Understanding Types of Optical Fiber 101</p> <p>4.7.1 Multimode Fiber 103</p> <p>4.7.1.1 Multimode Step-Index Fiber 103</p> <p>4.7.1.2 Multimode Graded-Index Fiber 104</p> <p>4.7.2 Single-Mode Fiber 105</p> <p>4.8 Summary and Conclusions 106</p> <p><b>5 Carriers’ Networks 108</b></p> <p>5.1 The Carriers’ Photonic Future 108</p> <p>5.2 Carriers’ Optical Networking Revolution 111</p> <p>5.2.1 Passive Optical Networks Evolution 112</p> <p>5.2.1.1 APONs 113</p> <p>5.2.1.2 EPONs 113</p> <p>5.2.2 Ethernet PONs Economic Case 114</p> <p>5.2.3 The Passive Optical Network Architecture 116</p> <p>5.2.4 The Active Network Elements 116</p> <p>5.2.4.1 The CO Chassis 117</p> <p>5.2.4.2 The Optical Network Unit 117</p> <p>5.2.4.3 The EMS 118</p> <p>5.2.5 Ethernet PONs: How They Work 118</p> <p>5.2.5.1 The Managing of Upstream/Downstream Traffic in an EPON 118</p> <p>5.2.5.2 The EPON Frame Formats 120</p> <p>5.2.6 The Optical System Design 121</p> <p>5.2.7 The Quality of Service 122</p> <p>5.2.8 Applications for Incumbent Local-Exchange Carriers 124</p> <p>5.2.8.1 Cost-Reduction Applications 124</p> <p>5.2.8.2 New Revenue Opportunities 125</p> <p>5.2.8.3 Competitive Advantage 126</p> <p>5.2.9 Ethernet PONs Benefits 126</p> <p>5.2.9.1 Higher Bandwidth 127</p> <p>5.2.9.2 Lower Costs 127</p> <p>5.2.9.3 More Revenue 128</p> <p>5.2.10 Ethernet in the First-Mile Initiative 128</p> <p>5.3 Flexible Metro Optical Networks 129</p> <p>5.3.1 Flexibility: What Does It Mean? 129</p> <p>5.3.1.1 Visibility 129</p> <p>5.3.1.2 Scalability 130</p> <p>5.3.1.3 Upgradability 130</p> <p>5.3.1.4 Optical Agility 130</p> <p>5.3.2 Key Capabilities 130</p> <p>5.3.3 Operational Business Case 132</p> <p>5.3.4 Flexible Approaches Win 133</p> <p>5.4 Summary and Conclusions 133</p> <p><b>6 Passive Optical Components 137</b></p> <p>6.1 Optical Material Systems 139</p> <p>6.1.1 Optical Device Technologies 144</p> <p>6.1.2 Multifunctional Optical Components 155</p> <p>6.2 Summary and Conclusions 158</p> <p><b>7 Free-Space Optics 160</b></p> <p>7.1 Free-Space Optical Communication 160</p> <p>7.2 Corner-Cube Retroreflectors 162</p> <p>7.2.1 CCR Design and Fabrication 163</p> <p>7.2.1.1 Structure-Assisted Assembly Design 163</p> <p>7.2.1.2 Fabrication 163</p> <p>7.3 Free-Space Heterochronous Imaging Reception 165</p> <p>7.3.1 Experimental System 167</p> <p>7.4 Secure Free-Space Optical Communication 168</p> <p>7.4.1 Design and Enabling Components of a Transceiver 168</p> <p>7.4.2 Link Protocol 169</p> <p>7.5 The Minimization of Acquisition Time 170</p> <p>7.5.1 Configuration of the Communication System 171</p> <p>7.5.2 Initiation–Acquisition Protocol 173</p> <p>7.5.2.1 Phase 1 173</p> <p>7.5.2.2 Phase 2 174</p> <p>7.5.2.3 Phase 3 174</p> <p>7.6 Summary and Conclusions 175</p> <p><b>8 Optical Formats: Synchronous Optical Network (SONET)/ Synchronous Digital Hierarchy (SDH), and Gigabit Ethernet 179</b></p> <p>8.1 Synchronous Optical Network 179</p> <p>8.1.1 Background 180</p> <p>8.1.2 Synchronization of Digital Signals 180</p> <p>8.1.3 Basic SONET Signal 181</p> <p>8.1.4 Why Synchronize: Synchronous versus Asynchronous 182</p> <p>8.1.4.1 Synchronization Hierarchy 182</p> <p>8.1.4.2 Synchronizing SONET 182</p> <p>8.1.5 Frame Format Structure 183</p> <p>8.1.5.1 STS-1 Building Block 183</p> <p>8.1.5.2 STS-1 Frame Structure 183</p> <p>8.1.5.3 STS-1 Envelope Capacity and Synchronous Payload Envelope 184</p> <p>8.1.5.4 STS-1 SPE in the Interior of STS- 1 Frames 185</p> <p>8.1.5.5 STS-N Frame Structure 186</p> <p>8.1.6 Overheads 186</p> <p>8.1.6.1 Section Overhead 187</p> <p>8.1.6.2 Line Overhead 187</p> <p>8.1.6.3 VT POH 188</p> <p>8.1.6.4 SONET Alarm Structure 189</p> <p>8.1.7 Pointers 192</p> <p>8.1.7.1 VT Mappings 192</p> <p>8.1.7.2 Concatenated Payloads 192</p> <p>8.1.7.3 Payload Pointers 194</p> <p>8.1.7.4 VTs 196</p> <p>8.1.7.5 STS-1 VT1.5 SPE Columns 198</p> <p>8.1.7.6 DS-1 Visibility 198</p> <p>8.1.7.7 VT Superframe and Envelope Capacity 202</p> <p>8.1.7.8 VT SPE and Payload Capacity 202</p> <p>8.1.8 SONET Multiplexing 203</p> <p>8.1.9 SONET Network Elements: Terminal Multiplexer 204</p> <p>8.1.9.1 Regenerator 205</p> <p>8.1.9.2 Add/Drop Multiplexer (ADM) 205</p> <p>8.1.9.3 Wideband Digital Cross-Connects 206</p> <p>8.1.9.4 Broadband Digital Cross-Connect 207</p> <p>8.1.9.5 Digital Loop Carrier 207</p> <p>8.1.10 SONET Network Configurations: Point to Point 208</p> <p>8.1.10.1 Point-to-Multipoint 209</p> <p>8.1.10.2 Hub Network 209</p> <p>8.1.10.3 Ring Architecture 209</p> <p>8.1.11 What Are the Benefits of SONET? 209</p> <p>8.1.11.1 Pointers, MUX/DEMUX 211</p> <p>8.1.11.2 Reduced Back-to-Back Multiplexing 211</p> <p>8.1.11.3 Optical Interconnect 211</p> <p>8.1.11.4 Multipoint Configurations 211</p> <p>8.1.11.5 Convergence, ATM, Video3, and SONET 212</p> <p>8.1.11.6 Grooming 213</p> <p>8.1.11.7 Reduced Cabling and Elimination of DSX Panels 213</p> <p>8.1.11.8 Enhanced OAM&P 213</p> <p>8.1.11.9 Enhanced Performance Monitoring 213</p> <p>8.1.12 SDH Reference 213</p> <p>8.1.12.1 Convergence of SONET and SDH Hierarchies 214</p> <p>8.1.12.2 Asynchronous and Synchronous Tributaries 215</p> <p>8.2 Synchronous Digital Hierarchy 215</p> <p>8.2.1 SDH Standards 216</p> <p>8.2.2 SDH Features and Management: Traffic Interfaces 217</p> <p>8.2.2.1 SDH Layers 217</p> <p>8.2.2.2 Management Functions 217</p> <p>8.2.3 Network Generic Applications: Evolutionary Pressures 218</p> <p>8.2.3.1 Operations 218</p> <p>8.2.4 Network Generic Applications: Equipment and Uses 218</p> <p>8.2.5 Cross-Connect Types 221</p> <p>8.2.6 Trends in Deployment 221</p> <p>8.2.7 Network Design: Network Topology 222</p> <p>8.2.7.1 Introduction Strategy for SDH 223</p> <p>8.2.8 SDH Frame Structure: Outline 223</p> <p>8.2.9 Virtual Containers 225</p> <p>8.2.10 Supporting Different Rates 225</p> <p>8.3 Gigabit Ethernet 226</p> <p>8.3.1 Gigabit Ethernet Basics 227</p> <p>8.3.2 Gigabit Ethernet Standards and Layers 228</p> <p>8.3.3 Metro and Access Standards 229</p> <p>8.4 Summary and Conclusions 230</p> <p><b>9 Wave Division Multiplexing 233</b></p> <p>9.1 Who Uses WDM? 233</p> <p>9.1.1 How is WDM Deployed? 234</p> <p>9.2 Dense Wavelength Division Multiplexed Backbone Deployment 235</p> <p>9.2.1 The Proposed Architecture 235</p> <p>9.3 IP-Optical Integration 236</p> <p>9.3.1 Control Plane Architectures 237</p> <p>9.3.2 Data Framing and Performance Monitoring 239</p> <p>9.3.3 Resource Provisioning and Survivability 240</p> <p>9.4 QoS Mechanisms 241</p> <p>9.4.1 Optical Switching Techniques 242</p> <p>9.4.1.1 Wavelength Routing Networks 242</p> <p>9.4.1.2 Optical Packet-Switching Networks 243</p> <p>9.4.1.3 Optical Burst Switching Networks 243</p> <p>9.4.2 QoS in IP-Over-WDM Networks 243</p> <p>9.4.2.1 QoS in WR Networks 244</p> <p>9.4.2.2 QoS in Optical Packet Switching Networks 245</p> <p>9.4.2.3 QOS in Optical Burst Switching Networks 246</p> <p>9.5 Optical Access Network 249</p> <p>9.5.1 Proposed Structure 250</p> <p>9.5.2 Network Elements and Prototypes 252</p> <p>9.5.2.1 OCSM 252</p> <p>9.5.2.2 OLT 252</p> <p>9.5.2.3 ONU 254</p> <p>9.5.3 Experiments 254</p> <p>9.6 Multiple-Wavelength Sources 255</p> <p>9.6.1 Ultrafast Sources and Bandwidth 255</p> <p>9.6.2 Supercontinuum Sources 256</p> <p>9.6.3 Multiple-Wavelength Cavities 257</p> <p>9.7 Summary and Conclusions 259</p> <p><b>10 Basics of Optical Switching 263</b></p> <p>10.1 Optical Switches 263</p> <p>10.1.1 Economic Challenges 263</p> <p>10.1.2 Two Types of Optical Switches 264</p> <p>10.1.3 All-Optical Switches 265</p> <p>10.1.3.1 All-Optical Challenges 266</p> <p>10.1.3.2 Optical Fabric Insertion Loss 267</p> <p>10.1.3.3 Network-Level Challenges of the All-Optical Switch 267</p> <p>10.1.4 Intelligent OEO Switches 268</p> <p>10.1.4.1 OxO 269</p> <p>10.1.5 Space and Power Savings 270</p> <p>10.1.6 Optimized Optical Nodes 271</p> <p>10.2 Motivation and Network Architectures 273</p> <p>10.2.1 Comparison 274</p> <p>10.2.1.1 Detailed Comparison 276</p> <p>10.2.1.2 Synergy Between Electrical and Photonic Switching 279</p> <p>10.2.2 Nodal Architectures 280</p> <p>10.3 Rapid Advances in Dense Wavelength Division Multiplexing Technology 282</p> <p>10.3.1 Multigranular Optical Cross-Connect Architectures 282</p> <p>10.3.1.1 The Multilayer MG-OXC 283</p> <p>10.3.1.2 Single-Layer MG-OXC 284</p> <p>10.3.1.3 An Illustrative Example 285</p> <p>10.3.2 Waveband Switching 286</p> <p>10.3.2.1 Waveband Switching Schemes 286</p> <p>10.3.2.2 Lightpath Grouping Strategy 287</p> <p>10.3.2.3 Major Benefits of WBS Networks 287</p> <p>10.3.3 Waveband Routing Versus Wavelength Routing 287</p> <p>10.3.3.1 Wavelength and Waveband Conversion 288</p> <p>10.3.3.2 Waveband Failure Recovery in MG-OXC Networks 288</p> <p>10.3.4 Performance of WBS Networks 289</p> <p>10.3.4.1 Static Traffic 289</p> <p>10.3.4.2 Dynamic Traffic 290</p> <p>10.4 Switched Optical Backbone 291</p> <p>10.4.1 Scalability 293</p> <p>10.4.2 Resiliency 293</p> <p>10.4.3 Flexibility 293</p> <p>10.4.4 Degree of Connectivity 293</p> <p>10.4.5 Network Architecture 294</p> <p>10.4.5.1 PoP Configuration 294</p> <p>10.4.5.2 Traffic Restoration 295</p> <p>10.4.5.3 Routing Methodology 297</p> <p>10.4.5.4 Packing of IP Flows onto Optical Layer Circuits 297</p> <p>10.4.5.5 Routing of Primary and Backup Paths on Physical Topology 298</p> <p>10.5 Optical MEMS 299</p> <p>10.5.1 MEMS Concepts and Switches 299</p> <p>10.5.2 Tilting Mirror Displays 301</p> <p>10.5.3 Diffractive MEMS 301</p> <p>10.5.4 Other Applications 303</p> <p>10.6 Multistage Switching System 303</p> <p>10.6.1 Conventional Three-Stage Clos Switch Architecture 305</p> <p>10.7 Dynamic Multilayer Routing Schemes 307</p> <p>10.7.1 Multilayer Traffic Engineering with a Photonic MPLS Router 309</p> <p>10.7.2 Multilayer Routing 311</p> <p>10.7.3 IETF Standardization for Multilayer GMPLS Networks Routing Extensions 313</p> <p>10.7.3.1 PCE Implementation 313</p> <p>10.8 Summary and Conclusions 314</p> <p><b>11 Optical Packet Switching 318</b></p> <p>11.1 Design for Optical Networks 321</p> <p>11.2 Multistage Approaches to OPS: Node Architectures for OPS 321</p> <p>11.2.1 Applied to OPS 322</p> <p>11.2.2 Reducing the Number of SOAs for a B&S Switch 323</p> <p>11.2.3 A Strictly Nonblocking AWG-Based Switch for Asynchronous Operation 324</p> <p>11.3 Summary and Conclusions 325</p> <p><b>12 Optical Network Configurations 326</b></p> <p>12.1 Optical Networking Configuration Flow-Through Provisioning 326</p> <p>12.2 Flow-Through Provisioning at Element Management Layer 328</p> <p>12.2.1 Resource Reservation 328</p> <p>12.2.2 Resource Sharing with Multiple NMS 328</p> <p>12.2.3 Resource Commit by EMS 328</p> <p>12.2.4 Resource Rollback by EMS 329</p> <p>12.2.5 Flow-Through in Optical Networks at EMS Level 329</p> <p>12.3 Flow-Through Circuit Provisioning in the Same Optical Network Domain 329</p> <p>12.4 Flow-Through Circuit Provisioning in Multiple Optical Network Domain 329</p> <p>12.5 Benefits of Flow-Through Provisioning 330</p> <p>12.6 Testing and Measuring Optical Networks 332</p> <p>12.6.1 Fiber Manufacturing Phase 332</p> <p>12.6.2 Fiber Installation Phase 332</p> <p>12.6.3 DWDM Commissioning Phase 333</p> <p>12.6.4 Transport Life Cycle Phase 334</p> <p>12.6.5 Network-Operation Phase 335</p> <p>12.6.6 Integrated Testing Platform 335</p> <p>12.7 Summary and Conclusions 335</p> <p><b>13 Developing Areas in Optical Networking 337</b></p> <p>13.1 Optical Wireless Networking High-Speed Integrated Transceivers 338</p> <p>13.1.1 Optical Wireless Systems: Approaches to Optical Wireless Coverage 339</p> <p>13.1.1.1 What Might Optical Wireless Offer? 339</p> <p>13.1.1.2 Constraints and Design Considerations 340</p> <p>13.1.2 Cellular Architecture 341</p> <p>13.1.3 Components and Integration Approach to Integration 341</p> <p>13.1.3.1 Optoelectronic Device Design 343</p> <p>13.1.3.2 Electronic Design 343</p> <p>13.1.3.3 Optical Systems Design and System Integration 344</p> <p>13.2 Wavelength-Switching Subsystems 344</p> <p>13.2.1 2 D MEMS Switches 345</p> <p>13.2.2 3 D MEMS Switches 346</p> <p>13.2.3 1 D MEMS-Based Wavelength-Selective Switch 346</p> <p>13.2.3.1 1 D MEMS Fabrication 346</p> <p>13.2.3.2 Mirror Control 347</p> <p>13.2.3.3 Optical Performance 348</p> <p>13.2.3.4 Reliability 349</p> <p>13.2.4 Applications: 1-D MEMS Wavelength Selective Switches 350</p> <p>13.2.4.1 Reconfigurable OADM 350</p> <p>13.2.4.2 Wavelength Cross-connect 351</p> <p>13.2.4.3 Hybrid Optical Cross-connect 352</p> <p>13.3 Optical Storage Area Networks 352</p> <p>13.3.1 The Light-Trails Solution 353</p> <p>13.3.2 Light Trails for SAN Extension 355</p> <p>13.3.3 Light-Trails for Disaster Recovery 359</p> <p>13.3.4 Grid Computing and Storage Area Networks: The Light-Trails Connection 360</p> <p>13.3.5 Positioning a Light-Trail Solution for Contemporary SAN Extension 361</p> <p>13.4 Optical Contacting 362</p> <p>13.4.1 Frit and Diffusion Bonding 362</p> <p>13.4.2 Optical Contacting Itself 363</p> <p>13.4.3 Robust Bonds 363</p> <p>13.4.4 Chemically Activated Direct Bonding 364</p> <p>13.5 Optical Automotive Systems 365</p> <p>13.5.1 The Evolving Automobile 365</p> <p>13.5.2 Media-Oriented Systems Transport 366</p> <p>13.5.3 1394 Networks 367</p> <p>13.5.4 Byteflight 367</p> <p>13.5.5 A Slow Spread Likely 368</p> <p>13.6 Optical Computing 369</p> <p>13.7 Summary and Conclusions 371</p> <p><b>14 Summary, Conclusions, and Recommendations 374</b></p> <p>14.1 Summary 374</p> <p>14.1.1 Optical Layer Survivability: Why and Why Not 374</p> <p>14.1.2 What Has Been Deployed? 376</p> <p>14.1.3 The Road Forward 377</p> <p>14.1.4 Optical Wireless Communications 377</p> <p>14.1.4.1 The First-Mile Problem 378</p> <p>14.1.4.2 Optical Wireless as a Complement to RF Wireless 379</p> <p>14.1.4.3 Frequently Asked Questions 380</p> <p>14.1.4.4 Optical Wireless System Eye Safety 380</p> <p>14.1.4.5 The Effects of Atmospheric Turbulence on Optical Links 381</p> <p>14.1.4.6 Free-Space Optical Wireless Links with Topology Control 382</p> <p>14.1.4.7 Topology Discovery and Monitoring 382</p> <p>14.1.4.8 Topology Change and the Decision- Making Process 383</p> <p>14.1.4.9 Topology Reconfiguration: A Free-Space Optical Example 383</p> <p>14.1.4.10 Experimental Results 384</p> <p>14.2 Conclusion 385</p> <p>14.2.1 Advances in OPXC Technologies 385</p> <p>14.2.1.1 The Photonic MPLS Router 386</p> <p>14.2.1.2 Practical OPXC 386</p> <p>14.2.1.3 The PLC-SW as the Key OPXC Component 386</p> <p>14.2.2 Optical Parametric Amplification 388</p> <p>14.2.2.1 Basic Concepts 388</p> <p>14.2.2.2 Variations on a Theme 389</p> <p>14.2.2.3 Applications 391</p> <p>14.3 Recommendations 391</p> <p>14.3.1 Laser-Diode Modules 392</p> <p>14.3.2 Thermoelectric Cooler 393</p> <p>14.3.3 Thermistor 395</p> <p>14.3.4 Photodiode 396</p> <p>14.3.5 Receiver Modules 397</p> <p>14.3.6 Parallel Optical Interconnects 398</p> <p>14.3.6.1 System Needs 399</p> <p>14.3.6.2 Technology Solutions 400</p> <p>14.3.6.3 Challenges and Comparisons 403</p> <p>14.3.6.4 Scalability for the Future 404</p> <p>14.3.7 Optical Storage Area Networks 405</p> <p>14.3.7.1 Storage Area Network Extension Solutions 406</p> <p>14.3.7.2 Reliability Analysis 407</p> <p>Appendix: Optical Ethernet Enterprise Case Study 415</p> <p>A. 1 Customer Profile 416</p> <p>A. 2 Present Mode of Operation 418</p> <p>A. 3 Future Mode of Operation 419</p> <p>A.3. 1 FMO 1: Grow the Existing Managed ATM Service 419</p> <p>A.3. 2 FMO 2: Managed Optical Ethernet Service 420</p> <p>A. 4 Comparing the Alternatives 421</p> <p>A.4. 1 Capability Comparison: Bandwidth Scalability 421</p> <p>A.4.1. 1 Improved Network Performance 421</p> <p>A.4.1. 2 Simplicity 421</p> <p>A.4.1. 3 Flexibility 422</p> <p>A.4. 2 Total Cost of Network Ownership Analysis 422</p> <p>A. 5 Summary and Conclusions 423</p> <p>Glossary 425</p> <p>Index 453</p>
"…a useful supplement to an advanced undergraduate or graduate curriculum…a helpful reference work for networking engineering professionals." (<i>Computing Reviews.com</i>, February 16, 2006)
<b>JOHN R. VACCA,</b> MS, MBA, is an information technology consultant and internationally known author. He has authored more than forty books and hundreds of articles in a wide range of technologies, including telecommunications, software, intelligence systems, and networks. His book <i>The World's 20 Greatest Unsolved Problems</i> was named one of Amazon.com's Best Books of 2004. Mr. Vacca was also a configuration management specialist, computer specialist, and the computer security official (CSO) for NASA's space station program (Freedom) and the International Space Station Program, from 1988 until his early retirement from NASA in 1995. Additionally, he is also an Independent online book reviewer and was one of the security consultants for the MGM movie <i>Antitrust</i>.
<b>A step-by-step approach to everything you need to know about optical networking</b> <p>From the fundamentals to advanced science to the most promising R&D, this book describes and illustrates how optical networking technology works. The author explains the underlying concepts, demystifies buzzwords and jargon, and instills a practical understanding of technologies and solutions, all without resorting to excessive detail. Not only do readers come to understand the current state of the technology, but they also gain valuable insight into the future of optical networking.</p> <p>Following a discussion of the fundamentals of communications, the author breaks the topic down into logical components, including:</p> <ul> <li>Fiber optics, carrier networks, optical networking equipment, and broadband services</li> <li>How glass fiber is used as a physical medium for communications and how light is used to represent information</li> <li>Comparison of single- and multi-mode fiber and vendors</li> <li>Concept of fiber rings, including the two principal strategies that carriers use to organize capacity: traditional SONET/SDH channels and newer IP/ATM bandwidth on demand services</li> <li>Latest wave of promising new equipment, configurations, and services, including Gig-E services, dark fiber, managed IP services, and virtual private networks (VPNs)</li> </ul> <p>Case studies, examples, and projects help readers understand how to install, configure, and troubleshoot optical networking technologies. A glossary at the end of the book defines terms and acronyms.</p> <p>With this handbook, readers come to understand why optical technologies are viewed as the best solution to meet ever-growing capacity demands. By building knowledge from a solid foundation of the basics, it is not only appropriate for network engineers, managers, and consultants, but also for any professional who needs to understand how optical networking works.</p>

Diese Produkte könnten Sie auch interessieren:

Yuzhnoye Launchers and Satellites
Yuzhnoye Launchers and Satellites
von: Christian Lardier
PDF ebook
129,99 €
Critical Systems Thinking
Critical Systems Thinking
von: Michael C. Jackson
EPUB ebook
34,99 €