Details

Global Climate Change and Terrestrial Invertebrates


Global Climate Change and Terrestrial Invertebrates


1. Aufl.

von: Scott N. Johnson, T. Hefin Jones

98,99 €

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 05.12.2016
ISBN/EAN: 9781119070825
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Invertebrates perform such vital roles in global ecosystems—and so strongly influence human wellbeing—that biologist E.O. Wilson was prompted to describe them as “little things that run the world.” As they are such powerful shapers of the world around us, their response to global climate change is also pivotal in meeting myriad challenges looming on the horizon—everything from food security and biodiversity to human disease control.</p> <p>This book presents a comprehensive overview of the latest scientific knowledge and contemporary theory relating to global climate change and terrestrial invertebrates. Featuring contributions from top international experts, this book explores how changes to invertebrate populations will affect human decision making processes across a number of crucial issues, including agriculture, disease control, conservation planning, and resource allocation. Topics covered include methodologies and approaches to predict invertebrate responses, outcomes for disease vectors and ecosystem service providers, underlying mechanisms for community level responses to global climate change, evolutionary consequences and likely effects on interactions among organisms, and many more. Timely and thought-provoking, <i>Global Climate Change and Terrestrial Invertebrates</i> offers illuminating insights into the profound influence the simplest of organisms may have on the very future of our fragile world.</p>
<p>List of Contributors xiii</p> <p>Preface xvii</p> <p><b>1 Introduction to Global Climate Change and Terrestrial Invertebrates 1<br /> </b><i>Scott N. Johnson and T. Hefin Jones</i></p> <p>1.1 Background 1</p> <p>1.2 Predictions for Climate and Atmospheric Change 2</p> <p>1.3 General Mechanisms for Climate Change Impacts on Invertebrates 2</p> <p>1.3.1 Direct Impacts on Physiology, Performance and Behaviour 3</p> <p>1.3.2 Indirect Impacts on Habitats, Resources and Interacting Organisms 3</p> <p>1.4 Themes of the Book 4</p> <p>1.4.1 Methods for Studying Invertebrates and Global Climate Change 4</p> <p>1.4.2 Friends and Foes: Ecosystem Service Providers and Vectors of Disease 4</p> <p>1.4.3 Multi-Trophic Interactions and Invertebrate Communities 5</p> <p>1.4.4 Evolution, Intervention and Emerging Perspectives 6</p> <p>Acknowledgements 7</p> <p>References 7</p> <p><b>Part I Methods for Studying Invertebrates and Climate Change 9</b></p> <p><b>2 Using Historical Data for Studying Range Changes 11<br /> </b><i>Georgina Palmer and Jane K. Hill</i></p> <p>Summary 11</p> <p>2.1 Introduction 11</p> <p>2.2 Review of Historical Data Sets on Species’ Distributions 13</p> <p>2.3 Methods for Using Historical Data to Estimate Species’ Range Changes 15</p> <p>2.3.1 Measuring Changes in Distribution Size 16</p> <p>2.3.2 Measuring Change in the Location of Species Ranges 16</p> <p>2.3.3 An Invertebrate Example: Quantifying Range Shift by the Comma Butterfly Polygonia c-album in Britain 17</p> <p>2.4 Challenges and Biases in Historical Data 19</p> <p>2.4.1 Taxonomic Bias 19</p> <p>2.4.2 Spatial and Temporal Biases 20</p> <p>2.4.3 Accounting for Temporal and Spatial Biases 21</p> <p>2.5 New Ways of Analysing Data and Future Perspectives 23</p> <p>Acknowledgements 24</p> <p>References 24</p> <p><b>3 Experimental Approaches for Assessing Invertebrate Responses to Global Change Factors 30<br /> </b><i>Richard L. Lindroth and Kenneth F. Raffa</i></p> <p>Summary 30</p> <p>3.1 Introduction 30</p> <p>3.2 Experimental Scale: Reductionist, Holistic and Integrated Approaches 32</p> <p>3.3 Experimental Design: Statistical Concerns 33</p> <p>3.4 Experimental Endpoints: Match Metrics to Systems 35</p> <p>3.5 Experimental Systems: Manipulations From Bottle to Field 36</p> <p>3.5.1 Indoor Closed Systems 36</p> <p>3.5.2 Outdoor Closed Systems 38</p> <p>3.5.3 Outdoor Open Systems 39</p> <p>3.6 Team Science: the Human Dimension 40</p> <p>3.6.1 Personnel 41</p> <p>3.6.2 Guiding Principles 41</p> <p>3.6.3 Operation and Communication 41</p> <p>3.7 Conclusions 41</p> <p>Acknowledgements 42</p> <p>References 42</p> <p><b>4 Transplant Experiments – a Powerful Method to Study Climate Change Impacts 46<br /> </b><i>Sabine S. Nooten and Nigel R. Andrew</i></p> <p>Summary 46</p> <p>4.1 Global Climate Change 46</p> <p>4.2 Climate Change Impacts on Species 47</p> <p>4.3 Climate Change Impacts on Communities 48</p> <p>4.4 Common Approaches to Study Climate Change Impacts 48</p> <p>4.5 Transplant Experiments – a Powerful Tool to Study Climate Change 49</p> <p>4.5.1 Can Species Adapt to a Warmer Climate? 50</p> <p>4.5.2 The Potential of Range Shifts 50</p> <p>4.5.3 Changes in the Timing of Events 51</p> <p>4.5.4 Shifts in Species Interactions 52</p> <p>4.5.5 Disentangling Genotypic and Phenotypic Responses 54</p> <p>4.5.6 Shifts in Communities 54</p> <p>4.6 Transplant Experiment Trends Using Network Analysis 57</p> <p>4.7 What’s Missing in Our Current Approaches? Next Steps for Implementing Transplant</p> <p>Experiments 60</p> <p>Acknowledgements 62</p> <p>References 62</p> <p><b>Part II Friends and Foes: Ecosystem Service Providers and Vectors of Disease 69</b></p> <p><b>5 Insect Pollinators and Climate Change 71<br /> </b><i>Jessica R. K. Forrest</i></p> <p>Summary 71</p> <p>5.1 Introduction 71</p> <p>5.2 The Pattern: Pollinator Populations and Climate Change 72</p> <p>5.2.1 Phenology 72</p> <p>5.2.2 Range Shifts 75</p> <p>5.2.3 Declining Populations 75</p> <p>5.3 The Process: Direct Effects of Climate Change 76</p> <p>5.3.1 Warmer Growing-Season Temperatures 76</p> <p>5.3.2 Warmer Winters and Reductions in Snowpack 79</p> <p>5.4 The Process: Indirect Effects of Climate Change 81</p> <p>5.4.1 Interactions with Food Plants 81</p> <p>5.4.2 Interactions with Natural Enemies 82</p> <p>5.5 Synthesis, and the View Ahead 83</p> <p>Acknowledgements 84</p> <p>References 84</p> <p><b>6 Climate Change Effects on Biological Control in Grasslands 92<br /> </b><i>Philippa J. Gerard and Alison J. Popay</i></p> <p>Summary 92</p> <p>6.1 Introduction 92</p> <p>6.2 Changes in Plant Biodiversity 94</p> <p>6.3 Multitrophic Interactions and Food Webs 94</p> <p>6.3.1 Warming and Predator Behaviour 97</p> <p>6.3.2 Herbage Productivity and Quality 98</p> <p>6.3.3 Plant Defence Compounds 98</p> <p>6.3.4 Fungal Endophytes 100</p> <p>6.3.5 Changes in Plant Phenology 101</p> <p>6.4 Greater Exposure to Extreme Events 102</p> <p>6.4.1 Changes in Precipitation 102</p> <p>6.4.2 Drought Effects 103</p> <p>6.5 Range Changes 103</p> <p>6.6 Greater Exposure to Pest Outbreaks 104</p> <p>6.7 Non-Target Impacts 104</p> <p>6.8 Conclusion 105</p> <p>Acknowledgements 105</p> <p>References 105</p> <p><b>7 Climate Change and Arthropod Ectoparasites and Vectors of Veterinary Importance 111<br /> </b><i>Hannah Rose Vineer, Lauren Ellse and Richard Wall</i></p> <p>Summary 111</p> <p>7.1 Introduction 111</p> <p>7.2 Parasite–Host Interactions 113</p> <p>7.3 Evidence of the Impacts of Climate on Ectoparasites and Vectors 114</p> <p>7.4 Impact of Human Behaviour and Husbandry on Ectoparasitism 116</p> <p>7.5 Farmer Intervention as a Density-Dependent Process 118</p> <p>7.6 Predicting Future Impacts of Climate Change on Ectoparasites and Vectors 118</p> <p>Acknowledgements 123</p> <p>References 123</p> <p><b>8 Climate Change and the Biology of Insect Vectors of Human Pathogens 126<br /> </b><i>Luis Fernando Chaves</i></p> <p>Summary 126</p> <p>8.1 Introduction 126</p> <p>8.2 Interaction with Pathogens 129</p> <p>8.3 Physiology, Development and Phenology 131</p> <p>8.4 Population Dynamics, Life History and Interactions with Other Vector Species 132</p> <p>8.5 Case Study of Forecasts for Vector Distribution Under Climate Change: The Altitudinal Range of Aedes albopictus and Aedes japonicus in Nagasaki, Japan 134</p> <p>8.6 Vector Ecology and Evolution in Changing Environments 138</p> <p>Acknowledgements 139</p> <p>References 140</p> <p><b>9 Climate and Atmospheric Change Impacts on Aphids as Vectors of Plant Diseases 148<br /> </b><i>James M.W. Ryalls and Richard Harrington</i></p> <p>Summary 148</p> <p>9.1 The Disease Pyramid 148</p> <p>9.1.1 Aphids 149</p> <p>9.1.2 Host-Plants 152</p> <p>9.1.3 Viruses 154</p> <p>9.2 Interactions with the Pyramid 155</p> <p>9.2.1 Aphid–Host-Plant Interactions 155</p> <p>9.2.2 Host-Plant–Virus Interactions 158</p> <p>9.2.3 Virus–Aphid Interactions 160</p> <p>9.2.4 Aphid–Host-Plant–Virus Interactions 162</p> <p>9.3 Conclusions and Future Perspectives 162</p> <p>Acknowledgements 163</p> <p>References 164</p> <p><b>Part III Multi-Trophic Interactions and Invertebrate Communities 177</b></p> <p><b>10 Global Change, Herbivores and Their Natural Enemies 179<br /> </b><i>William T. Hentley and Ruth N. Wade</i></p> <p>Summary 179</p> <p>10.1 Introduction 180</p> <p>10.2 Global Climate Change and Insect Herbivores 181</p> <p>10.3 Global Climate Change and Natural Enemies of Insect Herbivores 185</p> <p>10.3.1 Elevated Atmospheric CO2 185</p> <p>10.3.1.1 Prey Location 185</p> <p>10.3.1.2 Prey Quality 186</p> <p>10.3.2 Temperature Change 186</p> <p>10.3.3 Reduction in Mean Precipitation 188</p> <p>10.3.4 Extreme Events 190</p> <p>10.3.5 Ozone and UV-B 190</p> <p>10.4 Multiple Abiotic Factors 191</p> <p>10.5 Conclusions 192</p> <p>Acknowledgements 193</p> <p>References 193</p> <p><b>11 Climate Change in the Underworld: Impacts for Soil-Dwelling Invertebrates 201<br /> </b><i>Ivan Hiltpold, Scott N. Johnson, Renée-Claire Le Bayon and Uffe N. Nielsen</i></p> <p>Summary 201</p> <p>11.1 Introduction 201</p> <p>11.1.1 Soil Community Responses to Climate Change 202</p> <p>11.1.2 Scope of the Chapter 202</p> <p>11.2 Effect of Climate Change on Nematodes: Omnipresent Soil Invertebrates 203</p> <p>11.2.1 Nematode Responses to eCO2 203</p> <p>11.2.2 Nematode Responses to Warming 205</p> <p>11.2.3 Nematode Responses to Altered Precipitation Regimes 206</p> <p>11.2.4 Ecosystem Level Effects of Nematode Responses to Climate Change 207</p> <p>11.3 Effect of Climate Change on Insect Root Herbivores, the Grazers of the Dark 207</p> <p>11.3.1 Insect Root Herbivore Responses to eCO2 208</p> <p>11.3.2 Insect Root Herbivore Responses to Warming 210</p> <p>11.3.3 Insect Root Herbivore Responses to Altered Precipitation 210</p> <p>11.3.4 Soil-Dwelling Insects as Modifiers of Climate Change Effects 211</p> <p>11.4 Effect of Climate Change on Earthworms: the Crawling Engineers of Soil 212</p> <p>11.4.1 Earthworm Responses to eCO2 212</p> <p>11.4.2 Earthworm Responses to Warming and Altered Precipitation 214</p> <p>11.4.3 Climate Change Modification of Earthworm–Plant–Microbe Interactions 214</p> <p>11.4.4 Influence of Climate Change on Earthworms in Belowground Food Webs 215</p> <p>11.4.5 Influence of Climate Change on Earthworm Colonization of New Habitats 215</p> <p>11.5 Conclusions and Future Perspectives 216</p> <p>Acknowledgements 217</p> <p>References 218</p> <p><b>12 Impacts of Atmospheric and Precipitation Change on Aboveground-Belowground Invertebrate Interactions 229<br /> </b><i>Scott N. Johnson, James M.W. Ryalls and Joanna T. Staley</i></p> <p>Summary 229</p> <p>12.1 Introduction 229</p> <p>12.1.1 Interactions Between Shoot and Root Herbivores 231</p> <p>12.1.2 Interactions Between Herbivores and Non-Herbivorous Invertebrates 232</p> <p>12.1.2.1 Detritivore–Shoot Herbivore Interactions 232</p> <p>12.1.2.2 Root Herbivore–Pollinator Interactions 232</p> <p>12.2 Atmospheric Change – Elevated Carbon Dioxide Concentrations 233</p> <p>12.2.1 Impacts of e[CO2] on Interactions Mediated by Plant Trait Modification 233</p> <p>12.2.2 Impacts of e[CO2] and Warming on Interactions Mediated by Plant Trait Modification 234</p> <p>12.2.3 Impacts of Aboveground Herbivores on Belowground Invertebrates via Deposition Pathways 234</p> <p>12.3 Altered Patterns of Precipitation 236</p> <p>12.3.1 Precipitation Effects on the Outcome of Above–Belowground Interactions 236</p> <p>12.3.1.1 Case Study – Impacts of Simulated Precipitation Changes on Aboveground–Belowground Interactions in the Brassicaceae 237</p> <p>12.3.2 Aboveground–Belowground Interactions in Mixed Plant Communities Under Altered Precipitation Scenarios 239</p> <p>12.3.3 Altered Precipitation Impacts on Decomposer–Herbivore Interactions 240</p> <p>12.3.4 Impacts of Increased Unpredictability and Variability of Precipitation Events on the Frequency of Above–Belowground Interactions 240</p> <p>12.4 Conclusions and Future Directions 242</p> <p>12.4.1 Redressing the Belowground Knowledge Gap 243</p> <p>12.4.2 Testing Multiple Environmental Factors 243</p> <p>12.4.3 New Study Systems 244</p> <p>12.4.4 Closing Remarks 245</p> <p>Acknowledgements 245</p> <p>References 245</p> <p><b>13 Forest Invertebrate Communities and Atmospheric Change 252<br /> </b><i>Sarah L. Facey and Andrew N. Gherlenda</i></p> <p>Summary 252</p> <p>13.1 Why Are Forest Invertebrate Communities Important? 253</p> <p>13.2 Atmospheric Change and Invertebrates 253</p> <p>13.3 Responses of Forest Invertebrates to Elevated Carbon Dioxide Concentrations 254</p> <p>13.3.1 Herbivores 254</p> <p>13.3.2 Natural Enemies 259</p> <p>13.3.3 Community-Level Responses 259</p> <p>13.4 Responses of Forest Invertebrates to Elevated Ozone Concentrations 263</p> <p>13.4.1 Herbivores 263</p> <p>13.4.2 Natural Enemies 264</p> <p>13.4.3 Community-Level Studies 265</p> <p>13.5 Interactions Between Carbon Dioxide and Ozone 265</p> <p>13.6 Conclusions and Future Directions 267</p> <p>Acknowledgements 268</p> <p>References 268</p> <p><b>14 Climate Change and Freshwater Invertebrates: Their Role in Reciprocal Freshwater–Terrestrial Resource Fluxes 274<br /> </b><i>Micael Jonsson and Cristina Canhoto</i></p> <p>Summary 274</p> <p>14.1 Introduction 274</p> <p>14.2 Climate-Change Effects on Riparian and Shoreline Vegetation 275</p> <p>14.3 Climate-Change Effects on Runoff of Dissolved Organic Matter 277</p> <p>14.4 Climate Change Effects on Basal Freshwater Resources Via Modified Terrestrial Inputs 278</p> <p>14.5 Effects of Altered Terrestrial Resource Fluxes on Freshwater Invertebrates 279</p> <p>14.6 Direct Effects of Warming on Freshwater Invertebrates 280</p> <p>14.7 Impacts of Altered Freshwater Invertebrate Emergence on Terrestrial Ecosystems 282</p> <p>14.8 Conclusions and Research Directions 284</p> <p>14.8.1 Effects of Simultaneous Changes in Resource Quality and Temperature on Freshwater Invertebrate Secondary Production 284</p> <p>14.8.2 Effects of Changed Resource Quality and Temperature on the Size Structure of Freshwater Invertebrate Communities 284</p> <p>14.8.3 Effects of Changed Resource Quality on Elemental Composition (i.e., Stoichiometry, Autochthony versus Allochthony, and PUFA Content) of Freshwater Invertebrates 284</p> <p>14.8.4 Effects of Changed Freshwater Invertebrate Community Composition and Secondary Production on Freshwater Insect Emergence 285</p> <p>14.8.5 Effects of Changed Quality (i.e., Size Structure and Elemental Composition) of Emergent Freshwater Insects on Terrestrial Food Webs 285</p> <p>14.8.6 Effects of Climate Change on Landscape-Scale Cycling of Matter Across the Freshwater–Terrestrial Interface 285</p> <p>Acknowledgements 286</p> <p>References 286</p> <p><b>15 Climatic Impacts on Invertebrates as Food for Vertebrates 295<br /> </b><i>Robert J. Thomas, James O. Vafidis and Renata J. Medeiros</i></p> <p>Summary 295</p> <p>15.1 Introduction 295</p> <p>15.2 Changes in the Abundance of Vertebrates 296</p> <p>15.2.1 Variation in Demography and Population Size 296</p> <p>15.2.2 Local Extinctions 299</p> <p>15.2.3 Global Extinctions 299</p> <p>15.3 Changes in the Distribution of Vertebrates 300</p> <p>15.3.1 Geographical Range Shifts 300</p> <p>15.3.2 Altitudinal Range Shifts 301</p> <p>15.3.3 Depth Range Shifts 302</p> <p>15.3.4 Food-Mediated Mechanisms and Trophic Consequences of Range Shifts 302</p> <p>15.4 Changes in Phenology of Vertebrates, and Their Invertebrate Prey 303</p> <p>15.4.1 Consequences of Phenological Changes for Trophic Relationships 303</p> <p>15.4.2 Phenological Mismatches in Marine Ecosystems 303</p> <p>15.4.3 Phenological Mismatches in Terrestrial Ecosystems 304</p> <p>15.4.3.1 Behaviour and Ecology of the Vertebrates 305</p> <p>15.4.3.2 Habitat Differences in Prey Phenology 306</p> <p>15.5 Conclusions 307</p> <p>15.6 Postscript: Beyond the Year 2100 308</p> <p>Acknowledgements 308</p> <p>References 308</p> <p><b>Part IV Evolution, Intervention and Emerging Perspectives 317</b></p> <p><b>16 Evolutionary Responses of Invertebrates to Global Climate Change: the Role of </b></p> <p><b>Life-History Trade-Offs and Multidecadal Climate Shifts 319<br /> </b><i>Jofre Carnicer, Chris Wheat, Maria Vives, Andreu Ubach, Cristina Domingo, S̈oren Nylin, Constantí Stefanescu, Roger Vila, Christer Wiklund and Josep Peñuelas</i></p> <p>Summary 319</p> <p>16.1 Introduction 319</p> <p>16.2 Fundamental Trade-Offs Mediating Invertebrate Evolutionary Responses to Global Warming 327</p> <p>16.2.1 Background 327</p> <p>16.2.2 Mechanisms Underpinning Trade-Offs 328</p> <p>16.2.2.1 Endocrine Hormone-Signalling Pathway – Antagonistic Pleiotropy Trade-Off Hypothesis 330</p> <p>16.2.2.2 The Thermal Stability – Kinetic Efficiency Trade-Off Hypothesis 330</p> <p>16.2.2.3 Resource-Allocation Trade-Off Hypothesis 331</p> <p>16.2.2.4 Enzymatic-Multifunctionality (Moonlighting) Hypothesis 331</p> <p>16.2.2.5 Respiratory Water Loss – Total Gas Exchange Hypothesis 332</p> <p>16.2.2.6 Water-Loss Trade-Off Hypotheses 332</p> <p>16.3 The Roles of Multi-Annual Extreme Droughts and Multidecadal Shifts in Drought Regimens in Driving Large-Scale Responses of Insect Populations 333</p> <p>16.4 Conclusions and New Research Directions 337</p> <p>Acknowledgements 339</p> <p>References 339</p> <p><b>17 Conservation of Insects in the Face of Global Climate Change 349<br /> </b><i>Paula Arribas, Pedro Abellán, Josefa Velasco, Andrés Millán and David Sánchez-Fernández</i></p> <p>Summary 349</p> <p>17.1 Introduction 349</p> <p>17.1.1 Insect Biodiversity 349</p> <p>17.1.2 Insect Biodiversity and Climate Change: the Research Landscape 350</p> <p>17.2 Vulnerability Drivers of Insect Species Under Climate Change 352</p> <p>17.3 Assessment of Insect Species Vulnerability to Climate Change 353</p> <p>17.4 Management Strategies for Insect Conservation Under Climate Change 355</p> <p>17.5 Protected Areas and Climate Change 357</p> <p>17.6 Perspectives on Insect Conservation Facing Climate Change 359</p> <p>Acknowledgements 360</p> <p>References 361</p> <p><b>18 Emerging Issues and Future Perspectives for Global Climate Change and Invertebrates 368<br /> </b><i>Scott N. Johnson and T. Hefin Jones</i></p> <p>18.1 Preamble 368</p> <p>18.2 Multiple Organisms, Asynchrony and Adaptation in Climate Change Studies 368</p> <p>18.3 Multiple Climatic Factors in Research 369</p> <p>18.4 Research Into Extreme Climatic Events 371</p> <p>18.5 Climate change and Invertebrate Biosecurity 372</p> <p>18.6 Concluding Remarks 374</p> <p>References 374</p> <p>Species Index 379</p> <p>Subject Index 385</p>
<p><b>Scott N. Johnson</b> is Senior Lecturer in Ecology at the Hawkesbury Institute for the Environment (HIE) at Western Sydney University.</p> <p><b>T. Hefin Jones</b> is Senior Lecturer in Ecology at the School of Biosciences, Cardiff University, and an Editor of the journals <i>Global Change Biology</i> and <i>Agricultural and Forest Entomology</i>.</p>

Diese Produkte könnten Sie auch interessieren:

Bioinformatics and Computational Biology Solutions Using R and Bioconductor
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
von: Robert Gentleman, Vincent Carey, Wolfgang Huber, Rafael Irizarry, Sandrine Dudoit
PDF ebook
223,63 €
A Computer Scientist's Guide to Cell Biology
A Computer Scientist's Guide to Cell Biology
von: William W. Cohen
PDF ebook
69,54 €
Chemical Signals in Vertebrates 11
Chemical Signals in Vertebrates 11
von: Jane Hurst, Robert J. Beynon, S. Craig Roberts, Tristram Wyatt
PDF ebook
234,33 €